
____________ 

*Corresponding author 

E-mail address: balbir.vashist007@gmail.com 

Received November 1, 2020 

661 

 

          Available online at http://scik.org 

          J. Math. Comput. Sci. 11 (2021), No. 1, 661-676 

https://doi.org/10.28919/jmcs/5158 

ISSN: 1927-5307 

 

 

COMMON FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE 

MAPPINGS USING GENERALIZED 𝜓-WEAK CONTRACTION 

PAWAN KUMAR1, NEERU YADAV2, BALBIR SINGH2,* 

1Department of Mathematics, Maitreyi College, University of Delhi, Chankyapuri, New Delhi-110021, India 

2School of Physical Sciences, Department of Mathematics, Starex University, Gurugram,122413, Haryana, India 

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. In this paper, first we introduce generalized  𝜓 −weak contraction condition that involves cubic and 

quadratic terms of distance function 𝑑(𝑥, 𝑦).  Secondly; we discuss common fixed point theorems for weakly 

compatible and weakly compatible mappings along with property (E.A.) and common limit range property.  At the 

end, we provide an example and an application of our main theorem satisfying integral type contraction condition. 
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1. INTRODUCTION 

Fixed point theory for contraction mappings and related mappings has played a 

fundamental role in many aspects of nonlinear functional analysis for many years. The theory 

has generally involved an interconnecting of geometrical and topological arguments in a Banach 

space setting. Fixed point theory results indicate that under certain conditions self-mapping on a 
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set admits a fixed point. Among all the results Banach contraction principle is the most 

celebrated due to its simplicity and ease of application in major areas of mathematics.  

Banach fixed point theorem is the basic tool to study fixed point theory and shows the 

existence and uniqueness of a fixed point under appropriate conditions. This theorem provides a 

technique for solving a variety of applied problems in mathematical sciences and engineering. 

Most of the problems of applied mathematics reduce to inequality which in turn their solutions 

give rise to the fixed points of certain mappings. It was the new era of the fixed point theory 

literature when the notion of commutativity mappings was used by Jungck [5] to obtain a 

generalization of Banach’s fixed point theorem for a pair of mappings. The first ever attempt to 

relax the commutativity to weak commutativity was initiated by Sessa [13]. Further, in 1986 

Jungck [6] introduced more generalized commutativity, so called compatibility. One can notice 

that the notion of weak commutativity is a point property, while the notion of compatibility is an 

iterate of sequence. In 1996, Jungck [8] introduced the notion of weakly compatible mappings 

and showed that compatible maps are weakly compatible, but not converse may not be true. 

 In 2002, Aamri and El-Moutawakil [1] introduced the concept of property (E.A.) for the 

self-mappings, which also includes the notion of the class of non-compatible mappings. 

Sintunavarat and Kumam [14] further generalized the notion of property (E.A.) by introducing 

the notion of common limit in the range property (CLR property). The significance of the CLR 

property and property (E.A.) have the following properties:(i)both the properties relaxes the 

continuity hypothesis of all the involved mappings and also relaxes the containment condition of 

the range subspace of the mapping into the range subspaces of the other mappings, which is 

generally required for constructing the sequences of joint iterates in fixed point results.(ii) the 

property (E.A.) replaces the completeness requirement of the space (or the range subspaces of 

the mappings involved) by the condition of the range subspace of the mapping to be closed, 

whereas  (CLR) property ensures that the requirement of the completeness of the space (or range 

subspaces of any of the mappings involved) can be relaxed entirely and need not to be replaced 

by any other condition. 
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2. PRELIMINARIES 

Let  (𝑋, 𝑑) be a metric space. If 𝑇 ∶  𝑋 →  𝑋  satisfies 𝑑(𝑇(𝑥), 𝑇(𝑦))  ≤  𝑘(𝑑(𝑥, 𝑦)) for 

all 𝑥, 𝑦 ∈  𝑋, 𝑘 ≥ 0. The smallest 𝑘  for which the above inequality holds is the Lipschitz 

constant of  T. 

If  k≤ 1 then T  is said to be non-expansive, if 0 < 𝑘 <  1T is said to be a contraction. 

Banach fixed point theorem states that every contraction mapping on a complete metric space 

has a unique fixed point.  

Let  (𝑋, 𝑑)  be a complete metric space. If 𝑇 ∶  𝑋 →  𝑋  satisfies  𝑑(𝑇(𝑥), 𝑇(𝑦))  ≤

 𝑘(𝑑(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈  𝑋, 0 ≤ 𝑘 < 1, then it has a unique fixed point.   

In 1969, Boyd and Wong [3] replaced the constant 𝑘 in Banach contraction principle by a 

control function 𝜓 as follows: 

Let (𝑋, 𝑑)  be a complete metric space and 𝜓 ∶  [0 ,∞) →  [0,∞)  be upper semi 

continuous from the right such that 0 ≤  𝜓(𝑡) < 𝑡 for all  𝑡 > 0. 

If  𝑇 ∶  𝑋 →  𝑋 satisfies   𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤  𝜓(𝑑(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈  𝑋,  then it has a 

unique fixed point. Now we discuss weak contractions. The maps which are contractive without 

being contractions. 

Let 𝑋 be a metric space with a metric 𝑑. A map 𝑇 ∶  𝑋 →  𝑋 is aweak contraction if   

𝑑(𝑇𝑥1, 𝑇𝑥2)  <  𝑑(𝑥1, 𝑥2), for all 𝑥1 ≠ 𝑥2.Being a weak contraction is not in general a sufficient 

condition for Tin order to have a fixed point 

In 1997, Alber and Gueree-Delabriere [2] introduced the concept of weak contraction as 

follows:  

A map  𝑇 ∶  𝑋 → 𝑋 is said to be weak contraction if for each 𝑥, 𝑦∈ 𝑋 , there exists a 

function ∅ : [0, ∞) → [0, ∞), ∅ (𝑡) > 0 for all 𝑡 > 0 and ∅ (0) = 0 such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦) − ∅ (𝑑(𝑥, 𝑦)).    
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In connection with control function 𝜓: R+ → R+ different authors have considered some of the 

following properties: 

(i) 𝜓 is non decreasing 

(ii) ψ(t) < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0 

(iii) 𝜓(0) = 0 

(iv) 𝜓 is continuous 

(v) lim n → ∞ ψn(t) = 0 for all t ≥ 0 

(vi) ∑ ψn(t)∞
𝑛=0  converges for all t>0, ψnis the nth iterate 

(vii) ψ(t) = 0 iff t = 0 

(viii) ψ(t) > 0 for all t ∈ R+\{0) 

(ix)  lim r → t+ψ.(t) < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0 

(x) lim t → ∞ ψ.(t)=∞ 

(xi) 𝜓 is lower semi continuous 

Here we note that 

 (i) and (ii) implies (iii) ; 

 (ii) and (iv) implies (iii) 

 (i) and (v) implies (ii) 

A function 𝜓  satisfying (i) and (v) that is 𝜓  is non decreasing and limn → ∞ ψn(t) =

0 for all t ≥ 0 is called as a comparison function.  

Several fixed point theorems and common fixed point theorems have been unified considering a 

general condition by an implicit function. 

 In 1986 Jungck [6] introduced more generalized commutativity, so called compatibility. 

The notion of compatibility is an iterate of sequence. 

Definition 2.1[6] Two self-mappings 𝑓 and 𝑔 on a metric space (𝑋, 𝑑)are called compatible if 

𝑙𝑖𝑚𝑛𝑑(𝑓𝑔𝑥𝑛, 𝑔𝑓𝑥𝑛) = 0, whenever {𝑥𝑛} is a sequence in 𝑋 such that  

                              𝑙𝑖𝑚𝑛𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑔𝑥𝑛 = 𝑡,for some 𝑡 in 𝑋.  
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In 1996, Jungck [8] introduced the notion of weakly compatible mappings and showed 

that compatible maps are weakly compatible, but converse may not be true.   

Definition 2.2[8]Two self-mappings f and g on a metric space (𝑋, 𝑑) are called weakly 

compatible if they commute at their coincidence point i.e., 

if𝑓𝑢 = 𝑔𝑢 for some 𝑢 ∈ 𝑋 then  𝑓𝑔𝑢 = 𝑔𝑓𝑢.  

In 2002, Aamri and EI Moutawakil [1] introduced the notion of (E.A.) property follows:  

Definition 2.3[1] Let f and g be two self-mappings of a metric space (𝑋, 𝑑). We say that f and g 

satisfy (E.A) property if there exists a sequence {𝑥𝑛} in X such that 

                              𝑙𝑖𝑚𝑛𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑔𝑥𝑛 = 𝑡, for some 𝑡 in  𝑋. 

Pathak et.al [11] has shown that weak compatibility and (E.A.) property are independent to each 

other. 

In 2011, Sintunavarat and Kumam [14] coined the idea of common limit range property 

(called CLR) which relaxes the requirement of completeness to compute fixed point. 

Definition 2.4[14] Two self mappings 𝑓 and 𝑔 on a metric space (𝑋, 𝑑)are are said to satisfy the 

common limit in the range of 𝑔 property denoted as CLRg property if  

                              𝑙𝑖𝑚𝑛𝑓𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑔𝑥𝑛 = 𝑔𝑡, for some 𝑡 in 𝑋. 

Now we introduce the generalized 𝜓 −weak contraction for a pair of mappings in the 

following way: 

Let 𝐴, 𝐵, 𝑆 and 𝑇 are self mappings on a metric space (𝑋, 𝑑) satisfying the following conditions: 

(C1)                      𝑆(𝑋) ⊂ 𝐵(𝑋), 𝑇(𝑋) ⊂ 𝐴(𝑋); 

      (C2)      

𝑑3(𝑆𝑥, 𝑇𝑦) ≤ 𝜓 {

d2(Ax, Sx)d(By, Ty), d(Ax, Sx)d2(By, Ty),

d(Ax, Sx)d(Ax, Ty)d(By, Sx),

d(Ax, Ty)d(By, Sx)d(By, Ty)

} 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓: [0, ∞) → [0, ∞) is a continuous and non-decreasing function with 

𝜓(𝑡)< 𝑡 for each 𝑡 > 0. 



666 

PAWAN KUMAR, NEERU YADAV, BALBIR SINGH 

3. MAIN RESULTS  

In this section, first we prove a result for weakly compatible mappings that satisfy generalized 

 𝜓 − weak contraction involving cubic and quadratic terms of distance function. 

Theorem 3.1Let 𝐴, 𝐵, 𝑆 and 𝑇 are four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying (C1), (C2) and the following conditions: 

(C3) one of subspace 𝐴𝑋 or 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is complete subspace of X; then  

         (i) A and S have a point of coincidence, 

         (ii) B and T have a point of coincidence. 

Moreover assume that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible, then A, B, 𝑆 and 𝑇 have 

a unique common fixed point. 

Proof: Let 𝑥0 ∈ 𝑋 be an arbitrary point. From (C1) we can find 𝑥1 such that 𝑆(𝑥0) = 𝐵(𝑥1) =

𝑦0,for this 𝑥1 one can find 𝑥2 ∈ 𝑋 such that 𝑇(𝑥1) = 𝐴(𝑥2) = 𝑦1.Continuing in this way one can 

construct a sequence 𝑥𝑛 ∈ 𝑋 such that 

𝑦2𝑛 = 𝑆(𝑥2𝑛) = 𝐵(𝑥2𝑛+1), 𝑦2𝑛+1 = 𝑇(𝑥2𝑛+1) = 𝐴(𝑥2𝑛+2)for each 𝑛 ≥ 0.                          (3.1) 

For brevity, one can denote𝛼2𝑛 = 𝑑(𝑦2𝑛, 𝑦2𝑛+1). 

First we prove that {𝛼2𝑛} is non increasing sequence and converges to zero. 

Case I. If n is even, taking 𝑥 = 𝑥2𝑛 and 𝑦 = 𝑥2𝑛+1  in (C2), we get  

𝑑3(𝑆𝑥2𝑛, 𝑇𝑥2𝑛+1) ≤ 𝜓 

{
 
 

 
 𝑑2(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)

 𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑
2(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)

,

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛),

     𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)}
 
 

 
 

 

𝑑3(𝑦2𝑛, 𝑦2𝑛+1) ≤   𝜓 

{
 

 
𝑑2(𝑦2𝑛−1, 𝑦2𝑛)𝑑(𝑦2𝑛, 𝑦2𝑛+1)

 𝑑(𝑦2𝑛−1, 𝑦2𝑛)𝑑
2(𝑦2𝑛, 𝑦2𝑛+1)

,

𝑑(𝑦2𝑛−1, 𝑦2𝑛)𝑑(𝑦2𝑛−1, 𝑦2𝑛+1)𝑑(𝑦2𝑛, 𝑦2𝑛),

𝑑(𝑦2𝑛−1, 𝑦2𝑛+1)𝑑(𝑦2𝑛, 𝑦2𝑛)𝑑(𝑦2𝑛, 𝑦2𝑛+1)}
 

 

   (3.2) 

On using  𝛼2𝑛 = 𝑑(𝑦2𝑛, 𝑦2𝑛+1) in (3.2), we have 

         𝛼2𝑛
3  ≤   𝜓 {𝛼2𝑛−1

2 𝛼2𝑛 , 𝛼2𝑛−1𝛼2𝑛
2 , 0,0}                         (3.3) 

If 𝛼2𝑛−1 < 𝛼2𝑛  and using property of 𝜓 , then (3.3) reduces to 
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𝛼2𝑛
3 < 𝛼2𝑛

3 , a contradiction, therefore,  𝛼2𝑛 ≤  𝛼2𝑛−1. 

Case II. If n is odd, then in a similar way, one can obtain  𝛼2𝑛+1 ≤ 𝛼2𝑛. 

It follows that the sequence {𝛼2𝑛} is decreasing. 

Let lim
𝑛→∞

𝛼2𝑛 = 𝑟, for some 𝑟 ≥ 0. 

Suppose 𝑟 > 0, then from inequality (C2), we have 

𝑑3(𝑆𝑥2𝑛, 𝑇𝑥2𝑛+1) ≤  𝜓

{
 
 

 
 

{𝑑2(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1),

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑
2(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1).

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛),

𝑑(𝐴𝑥2𝑛, 𝑇𝑥2𝑛+1)𝑑(𝐵𝑥2𝑛+1, 𝑆𝑥2𝑛)𝑑(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)}
 
 

 
 

 

Now by using (3.3), triangular inequality, property of  𝜓  and proceed limits 𝑛 → ∞, we get 

𝑟3 ≤ 𝜓 (𝑟3) < 𝑟3, a contradiction, therefore we get 𝑟 = 0.  Therfore 

lim
𝑛→∞

𝛼2𝑛 = lim
𝑛→∞

𝑑(𝑦2𝑛, 𝑦2𝑛+1) = 𝑟 = 0.                                                          (3.4) 

Now we show that {𝑦𝑛} is a Cauchy sequence. Suppose we assume that {𝑦𝑛} is not a Cauchy 

sequence. For given  𝜖 > 0  we can find two sequences of positive integers {𝑚(𝑘)} and {𝑛(𝑘)} 

such that for all positive integers 𝑘 , 𝑛(𝑘) > 𝑚(𝑘) > 𝑘. 

   𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)) ≥ 𝜖, 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)−1) < 𝜖   (3.5)                                                                                                    

Now      𝜖 ≤ 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)) ≤ 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)−1) + 𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘)). 

Letting 𝑘 → ∞, we get  lim
𝑘→∞

𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)) =  𝜖 

Now from the triangular inequality we have,  

|𝑑(𝑦𝑛(𝑘), 𝑦𝑚(𝑘)+1) − 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘))| ≤ 𝑑(𝑦𝑚(𝑘), 𝑦𝑚(𝑘)+1). 

Taking limits as 𝑘 → ∞ and using (3.4) and (3.5), we have  

lim
𝑘→∞

𝑑(𝑦𝑛(𝑘), 𝑦𝑚(𝑘)+1) =  𝜖. 

Again from the triangular inequality, we have  

|𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)+1) − 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘))| ≤ 𝑑(𝑦𝑛(𝑘), 𝑦𝑛(𝑘)+1). 

Taking limits as 𝑘 → ∞ and using (3.4) and (3.5), we have  
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lim
𝑘→∞

𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘)+1) =  𝜖.  

Similarly on using triangular inequality, we have  

|𝑑(𝑦𝑚(𝑘)+1, 𝑦𝑛(𝑘)+1) − 𝑑(𝑦𝑚(𝑘), 𝑦𝑛(𝑘))| ≤ 𝑑(𝑦𝑚(𝑘), 𝑦𝑚(𝑘)+1) + 𝑑(𝑦𝑛(𝑘), 𝑦𝑛(𝑘)+1). 

Taking limit as 𝑘 → ∞ in the above inequality and using (3.4) and (3.5), we have 

lim
𝑘→∞

𝑑(𝑦𝑛(𝑘)+1, 𝑦𝑚(𝑘)+1) =  𝜖. 

On putting 𝑥 = 𝑥𝑚(𝑘)  and  𝑦 = 𝑥𝑛(𝑘) in (C2), we get  

𝑑3(𝑆𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))  ≤  𝜓 

{
 
 

 
 

𝑑2(𝐴𝑥𝑚(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)),

𝑑(𝐴𝑥𝑚(𝑘), 𝑆𝑥𝑚(𝑘))𝑑
2(𝐵𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘))

𝑑(𝐴𝑥𝑚(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐴𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑆𝑥𝑚(𝑘)),

𝑑(𝐴𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑆𝑥𝑚(𝑘))𝑑(𝐵𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)) }
 
 

 
 

 

Using (3.1), we obtain 

𝑑3(𝑦𝑚(𝑘), 𝑦𝑛(𝑘))  ≤  𝜓 

{
 
 

 
 

𝑑2(𝑦𝑚(𝑘)−1, 𝑦𝑚(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘)),

𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑚(𝑘))𝑑
2(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘))

𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑚(𝑘))𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑛(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑚(𝑘)),

𝑑(𝑦𝑚(𝑘)−1, 𝑦𝑛(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑚(𝑘))𝑑(𝑦𝑛(𝑘)−1, 𝑦𝑛(𝑘)) }
 
 

 
 

  

Letting  𝑘 → ∞, and using property of 𝜓, we have  

𝜖3 ≤ 0, 

                                                                    which is a contradiction.  

Thus {𝑦𝑛} is a Cauchy sequence in 𝑋.            

Now suppose that AX is complete subspace of X, then there exist  𝑧 ∈ 𝑋 such that 

𝑦2𝑛+1 = 𝑇(𝑥2𝑛+1) = 𝐴(𝑥2𝑛+2) → 𝑧  as  𝑛 → ∞. 

Consequently, we can find 𝑤 ∈ 𝑋  such that   𝐴𝑤 = 𝑧 . Further a Cauchy sequence {𝑦𝑛} has a 

convergent subsequence{𝑦2𝑛+1}, therefore the sequence {𝑦𝑛} converges and hence a subsequence 

{𝑦2𝑛} also converges. Thus we have 𝑦2𝑛 = 𝑆(𝑥2𝑛) = 𝐵(𝑥2𝑛+1) → 𝑧  as 𝑛 → ∞. 

On setting 𝑥 = 𝑤 and 𝑦 = 𝑥2𝑛+1 in (C2) and proceeding limit, we have  
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𝑑3(𝑆𝑤, 𝑧) ≤ 𝜓 {
𝑑2(𝐴𝑤, 𝑆𝑤)𝑑(𝐵𝑧, 𝑇𝑧), 𝑑(𝐴𝑤, 𝑆𝑤)𝑑2(𝐵𝑧, 𝑇𝑧),

𝑑(𝐴𝑤, 𝑆𝑤)𝑑(𝐴𝑤, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑤),
𝑑(𝐴𝑤, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑤)𝑑(𝐵𝑧, 𝑇𝑧)

} 

Therefore, 𝑑3(𝑆𝑤, 𝑧) ≤  𝜓 {
𝑑2(𝑧, 𝑆𝑤)𝑑(𝑧, 𝑧), 𝑑(𝑧, 𝑆𝑤)𝑑2(𝑧, 𝑧),

𝑑(𝑧, 𝑆𝑤)𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑤),
𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑤)𝑑(𝑧, 𝑧)

} 

This implies that 𝑆𝑤 = 𝑧 and hence 𝑆𝑤 = 𝐴𝑤 = 𝑧. Therefore, 𝑤 is a coincidence point of 𝐴 and 

𝑆. Since 𝑧 = 𝑆𝑤 ∈ 𝑆𝑋 ⊂ 𝐵𝑋 there exist 𝑣 ∈ 𝑋 such that 𝑧 = 𝐵𝑣. 

Next we claim that 𝑇𝑣 = 𝑧. Now putting 𝑥 = 𝑥2𝑛 and 𝑦 = 𝑣 in (C2), we have  

𝑑3(𝑆𝑥2𝑛, 𝑇𝑣) ≤  𝜓 {

𝑑2(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑣, 𝑇𝑣), 𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑
2(𝐵𝑣, 𝑇𝑣),

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑣)𝑑(𝐵𝑣, 𝑆𝑥2𝑛),

𝑑(𝐴𝑥2𝑛, 𝑇𝑣)𝑑(𝐵𝑣, 𝑆𝑥2𝑛)𝑑(𝐵𝑣, 𝑇𝑣)
} 

Therefore,  

𝑑3(𝑧, 𝑇𝑣) ≤ 𝜓{0,0,0,0},this gives 𝑧 = 𝑇𝑣 and hence 𝑧 = 𝑇𝑣 = 𝐵𝑣. Therefore, 𝑣 is a coincidence 

point of B and T. Since the pairs 𝐴, 𝑆 and 𝐵, 𝑇 are weakly compatible, we have  

𝑆𝑧 = 𝑆(𝐴𝑤) = 𝐴(𝑆𝑤) = 𝐴𝑧,    𝑇𝑧 = 𝑇(𝐵𝑣) = 𝐵(𝑇𝑣) = 𝐵𝑧. 

Next we show that 𝑆𝑧 = 𝑧.  For this put 𝑥 = 𝑧 and 𝑦 = 𝑥2𝑛+1 in (C2) 

For this put 𝑥 = 𝑧 and 𝑦 = 𝑥2𝑛+1 in (C2) and proceeding limit as n → ∞, 

𝑑3(𝑆𝑧, 𝑇𝑥2𝑛+1) ≤ 𝜓{
𝑑2(𝐴𝑧, 𝑆𝑧)𝑑(𝑧, 𝑧), 𝑑(𝐴𝑧, 𝑆𝑧)𝑑2(𝑧, 𝑧),

𝑑(𝐴𝑧, 𝑆𝑧)𝑑(𝐴𝑧, 𝑧)𝑑(𝑧, 𝑆𝑧),

𝑑(𝐴𝑧, 𝑧)𝑑(𝑧, 𝑆𝑧)𝑑(𝑧, 𝑧)
} 

Therefore, we get 

𝑑3(𝑆𝑧, 𝑧)  ≤   𝜓 {0,0,0,0} Using property of  𝜓,we have 

Thus we get 𝑑2(𝑆𝑧, 𝑧) = 0. This implies that 𝑆𝑧 = 𝑧and hence𝑆𝑧 = 𝐴𝑧 = 𝑧. 

Next we claim that 𝑇𝑧 = 𝑧.  Now put 𝑥 = 𝑥2𝑛 and 𝑦 = 𝑧 in (C2) 

𝑑3(𝑆𝑥2𝑛, 𝑇𝑧) ≤ 𝜓 {

𝑑2(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐵𝑧, 𝑇𝑧), 𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑
2(𝐵𝑧, 𝑇𝑧)

𝑑(𝐴𝑥2𝑛, 𝑆𝑥2𝑛)𝑑(𝐴𝑥2𝑛, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑥2𝑛),

𝑑(𝐴𝑥2𝑛, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑥2𝑛)𝑑(𝐵𝑧, 𝑇𝑧)
} 

Hence we get  
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𝑑3(𝑧, 𝑇𝑧) ≤ 𝜓 {0,0,0,0} 

This gives 𝑧 = 𝑇𝑧 and hence 𝑧 = 𝑇𝑧 = 𝐵𝑧. Therefore z is a common fixed point of 𝐴, 𝐵, 𝑆 and 𝑇. 

Similarly we can complete the proofs for the cases in which 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is complete. 

Uniqueness:  Suppose 𝑧 ≠ 𝑤 be two common fixed point of 𝑆, 𝑇, 𝐴  and 𝐵. 

Put 𝑥 = 𝑧 and 𝑦 = 𝑤 in (C2), we have  

𝑑3(𝑆𝑧, 𝑇𝑤) ≤ 𝜓 {
d2(Az, Sz)d(Bw, Tw), d(Az, Sz)d2(Bw, Tw),

d(Az, Sz)d(Az, Tw)d(Bw, Sz),
d(Ax, Ty)d(By, Sx)d(By, Ty)

} 

𝑖. 𝑒., 𝑑3(𝑆𝑧, 𝑇𝑤) ≤  𝜓  {0,0,0,0} 

𝑖. 𝑒. , 𝑑2(𝑧, 𝑤) = 0, this implies 𝑧 = 𝑤. 

This completes the proof. 

If we put  𝑆 = 𝑇 in theorem 3.1, then we obtain the following results 

Corollary 3.1 Let 𝑆, 𝐴  and 𝐵  are three self-mappings of a complete metric space (𝑋, 𝑑) 

satisfying (C3) and the following conditions: 

(C4)      𝑆(𝑋) ⊂ 𝐵(𝑋), 𝑆(𝑋) ⊂ 𝐴(𝑋); 

(C5)        𝑑3(𝑆𝑥, 𝑆𝑦) ≤  𝜓 {

𝑑2(𝐴𝑥, 𝑆𝑥)𝑑(𝐵𝑦, 𝑆𝑦), 𝑑(𝐴𝑥, 𝑆𝑥)𝑑2(𝐵𝑦, 𝑆𝑦),

𝑑(𝐴𝑥, 𝑆𝑥)𝑑(𝐴𝑥, 𝑆𝑦)𝑑(𝐵𝑦, 𝑆𝑥),

𝑑(𝐴𝑥, 𝑆𝑦)𝑑(𝐵𝑦, 𝑆𝑥)𝑑(𝐵𝑦, 𝑆𝑦)

} 

𝜓: [0, ∞) → [0, ∞) is a continuous and non-decreasing function with 𝜓(𝑡)< 𝑡 for each 𝑡 > 0 and. 

Assume that the pairs (𝐴, 𝑆) and (𝐵, 𝑆) are weakly compatible, then  𝑆, 𝐴 and 𝐵 have a unique 

common fixed point. 

In Theorem 3.1, if we put   𝐴 = 𝐵 = 𝐼, we obtain the following result. 

Corollary 3.2 Let 𝑆 and 𝑇be mappings of a complete metric space (𝑋, 𝑑) into itself satisfying 

the following conditions: 

𝑑3(𝑆𝑥, 𝑇𝑦) ≤  𝜓 {

𝑑2(𝑥, 𝑆𝑥)𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑆𝑥)𝑑2(𝑦, 𝑇𝑦),

𝑑(𝑥, 𝑆𝑥)𝑑(𝑥, 𝑇𝑦)𝑑(𝑦, 𝑆𝑥),

𝑑(𝑥, 𝑇𝑦)𝑑(𝑦, 𝑆𝑥)𝑑(𝑦, 𝑇𝑦)

},  for all 𝑥, 𝑦 ∈ 𝑋 and  
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 𝜓: [0, ∞) → [0, ∞) is a continuous and non decreasing function with 𝜓(𝑡)< 𝑡 for each 𝑡 > 0. If 

one of subspace 𝑆𝑋 or 𝑇𝑋 is complete then 𝑆 and  𝑇 have a unique common fixed point. 

Now we prove the above theorem for weakly compatible mappings in a metric space by 

dropping the condition of completeness of subspaces as follows:  

Theorem 3.2 Let 𝑆,𝑇, 𝐴 and 𝐵 are four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying (C1), (C2) and  the following condition: 

  (C6) one of subspace 𝐴𝑋 or 𝐵𝑋 or 𝑆𝑋 or 𝑇𝑋 is closed subset of X.  

Assume that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible. Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique 

common fixed point. 

Proof. As we know that the subspace of a complete metric space is complete if and only if it is 

closed. By Theorem 3.1, this conclusion holds. 

Now we prove a result for weakly compatible mappings along with property (E.A.) 

Theorem 3.3 Let 𝑆,𝑇, 𝐴 and 𝐵 are four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying (C1),  (C2),(C6) and  assume the following: 

 (C7) The pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible; 

 (C8)The pairs (𝐴, 𝑆) and (𝐵, 𝑇) are satisfies property (E.A). 

Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point. 

Proof. Suppose that the pair (𝐴, 𝑆) satisfies E.A. property then there exists a sequence {𝑥𝑛} in 𝑋 

such that 𝑙𝑖𝑚𝑛𝐴𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑆𝑥𝑛 = 𝑧 for some 𝑧 in 𝑋. Since 𝑆(𝑋) ⊂ 𝐵(𝑋), there exists a sequence 

{𝑦𝑛} in X such that  𝐵𝑦𝑛 = 𝑆𝑥𝑛 . Hence   𝑙𝑖𝑚𝑛𝐵𝑦𝑛 = 𝑧 . Also 𝑇(𝑋) ⊂ 𝐴(𝑋) so there exists a 

sequence {𝑤𝑛} in X such that 𝑇𝑤𝑛 = 𝐴𝑥𝑛. Hence𝑙𝑖𝑚𝑛𝑇𝑤𝑛 = 𝑧. 

Now suppose that BX is closed subset of X, then there exists 𝑢 ∈ 𝑋  such that 𝑧 = 𝐵𝑢 . 

Subsequently, we have      

𝑙𝑖𝑚𝑛𝐴𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑆𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑤𝑛 = 𝑙𝑖𝑚𝑛𝐵𝑦𝑛 = 𝑧 = 𝐵𝑢, for some 𝑢 ∈ 𝑋. 

First we claim that 𝑇𝑢 = 𝑧. 

Now putting 𝑥 = 𝑥𝑛 and 𝑦 = 𝑢 in (C2) 
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𝑑3(𝑆𝑥𝑛, 𝑇𝑢) ≤ 𝜓 

{
 

 
𝑑2(𝐴𝑥𝑛, 𝑆𝑥𝑛)𝑑(𝐵𝑢, 𝑇𝑢),

𝑑(𝐴𝑥𝑛, 𝑆𝑥𝑛)𝑑
2(𝐵𝑢, 𝑇𝑢),

𝑑(𝐴𝑥𝑛, 𝑆𝑥𝑛)𝑑(𝐴𝑥𝑛, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑥𝑛),

𝑑(𝐴𝑥𝑛, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑥𝑛)𝑑(𝐵𝑢, 𝑇𝑢) }
 

 

 

Therefore, we get 

𝑑3(𝑧, 𝑇𝑢) ≤  𝜓 {0,0,0,0}    .  

Using property of 𝜓, we have, 𝑧 = 𝑇𝑢 and hence 𝑧 = 𝑇𝑢 = 𝐵𝑢. Since 𝑇(𝑋) ⊂ 𝐴(𝑋) therefore 

there exists 𝑣 ∈ 𝑋 such that  𝑇𝑢 = 𝑧 = 𝐴𝑣. 

Next we claim that  𝑆𝑣 = 𝑧.On setting 𝑥 = 𝑣 and 𝑦 = 𝑢 in (C2), we get 

𝑑3(𝑆𝑣, 𝑇𝑢) ≤ 𝜓 

{
 

 
𝑑2(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑢, 𝑇𝑢),

𝑑(𝐴𝑣, 𝑆𝑣)𝑑2(𝐵𝑢, 𝑇𝑢)

𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑣),
𝑑(𝐴𝑣, 𝑇𝑢)𝑑(𝐵𝑢, 𝑆𝑣)𝑑(𝐵𝑢, 𝑇𝑢)}

 

 
 

Therefore, we get 

 𝑑3(𝑆𝑣, 𝑧) ≤ 𝜓 {
𝑑2(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧), 𝑑(𝑧, 𝑆𝑣)𝑑2(𝑧, 𝑧),

𝑑(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑣),
𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑣)𝑑(𝑧, 𝑧)

} 

Using property of 𝜓, we have 𝑆𝑣 = 𝑧  and hence 𝑆𝑣 = 𝐴𝑣 = 𝑧  so 𝐴𝑣 = 𝑆𝑣 = 𝑇𝑢 = 𝐵𝑢 =

𝑧.  Sincethe pairs (𝐴, 𝑆)  and (𝐵, 𝑇)  are weakly compatible and 𝑣  and 𝑢  are their coincidence 

point respectively, so we have 

𝐴𝑧 = 𝐴(𝑆𝑣) = 𝑆(𝐴𝑣) = 𝑆𝑧,      𝐵𝑧 = 𝐵(𝑇𝑢) = 𝑇(𝐵𝑢) = 𝑇𝑧. 

Now we prove that 𝑧 is a common fixed point of 𝐴, 𝐵, 𝑆and 𝑇. For this we prove that 𝑆𝑣 =

𝑇𝑧.On setting 𝑥 = 𝑣 and 𝑦 = 𝑧 in (C2), we get 

𝑑3(𝑆𝑣, 𝑇𝑧) ≤ 𝜓 {
𝑑2(𝐴𝑣, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧), 𝑑(𝐴𝑣, 𝑆𝑣)𝑑2(𝐵𝑧, 𝑇𝑧)

𝑑(𝐴𝑣, 𝑆𝑣)𝑑(𝐴𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑣),
𝑑(𝐴𝑣, 𝑇𝑧)𝑑(𝐵𝑧, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)

} 

Therefore, we get 

𝑑3(𝑆𝑣, 𝑇𝑧) ≤ 𝜓 {
𝑑2(𝑧, 𝑧)𝑑(𝐵𝑧, 𝑇𝑧), 𝑑(𝑧, 𝑧)𝑑2(𝐵𝑧, 𝑇𝑧),

𝑑(𝑧, 𝑧)𝑑(𝑆𝑣, 𝑇𝑧)𝑑(𝑇𝑧, 𝑆𝑣),
𝑑(𝑆𝑣, 𝑇𝑧)𝑑(𝑇𝑧, 𝑆𝑣)𝑑(𝐵𝑧, 𝑇𝑧)

} 
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Using property of  𝜓, we have  𝑆𝑣 = 𝑇𝑧  and hence 𝑧 = 𝑆𝑣 = 𝑇𝑧  and 𝑧 = 𝑇𝑧 = 𝐵𝑧, So  𝑧 is a 

common fixed point of 𝐵and 𝑇.Also we can prove that 𝑆𝑣 = 𝑧 is also a common fixed point of 

𝐴  and 𝑆. Similarly we can complete the proof for cases in which 𝐴𝑋  or 𝑆𝑋  or 𝑇𝑋 is closed 

subset of 𝑋. The uniqueness follows easily. This completes the proof.  

We shall continue our discussion to find fixed point for the mapping satisfying weakly 

compatible mappings along with common limit range property. 

Theorem 3.4 Let 𝑆,𝑇, 𝐴 and 𝐵 are four mappings of a complete metric space (𝑋, 𝑑) into itself 

satisfying (C1), (C2), (C6), (C7) and the following: 

 (C9) The pairs (𝐴, 𝑆) satisfiies CLRA property or the pair (𝐵, 𝑇) satisfies CLRB property. 

Then 𝑆, 𝑇, 𝐴 and 𝐵 have a unique common fixed point. 

Proof. If the pair (B, T) satisfies CLRB property so there exists a sequence {𝑥𝑛} in X such that  

𝑙𝑖𝑚𝑛𝐵𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑥𝑛 = 𝑧 ∈ 𝐵𝑋. Since𝑇(𝑋) ⊂ 𝐴(𝑋) so for each {𝑥𝑛} in X there corresponds a 

sequence {𝑦𝑛} in X such that 𝑇𝑥𝑛 = 𝐴𝑦𝑛. Therefore, 𝑙𝑖𝑚𝑛𝐴𝑦𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑥𝑛 = 𝑧 ∈ 𝐵𝑋. Thus we 

have𝑙𝑖𝑚𝑛𝐴𝑦𝑛 = 𝑙𝑖𝑚𝑛𝐵𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑥𝑛 = 𝑧.   

Now suppose that BX is a closed subset of X, there exists a point 𝑢 ∈ 𝑋 such that 𝐵𝑢 = 𝑧. 

Now we show that 𝑙𝑖𝑚𝑛𝑆𝑦𝑛 = 𝑧. Putting 𝑥 = 𝑦𝑛and 𝑦 = 𝑥𝑛 in (C2), we have 

𝑑3(𝑆𝑦𝑛, 𝑇𝑥𝑛) ≤  𝜓 

{
 

 
𝑑2(𝐴𝑦𝑛, 𝑆𝑦𝑛)𝑑(𝐵𝑥𝑛, 𝑇𝑥𝑛),

𝑑(𝐴𝑦𝑛, 𝑆𝑦𝑛)𝑑
2(𝐵𝑥𝑛, 𝑇𝑥𝑛),

𝑑(𝐴𝑦𝑛, 𝑆𝑦𝑛)𝑑(𝐴𝑦𝑛, 𝑇𝑥𝑛)𝑑(𝐵𝑥𝑛, 𝑆𝑦𝑛),

𝑑(𝐴𝑦𝑛, 𝑇𝑥𝑛)𝑑(𝐵𝑥𝑛, 𝑆𝑦𝑛)𝑑(𝐵𝑥𝑛, 𝑇𝑥𝑛)}
 

 

,  

𝑑3(𝑆𝑦𝑛, 𝑧) ≤ 𝜓 {

[𝑑2(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧), 𝑑(𝑧, 𝑆𝑦𝑛)𝑑
2(𝑧, 𝑧)],

𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑦𝑛),

𝑑(𝑧, 𝑧)𝑑(𝑧, 𝑆𝑦𝑛)𝑑(𝑧, 𝑧)

} 

Using property of𝜓, we have 𝑙𝑖𝑚𝑛𝑑(𝑆𝑦𝑛, 𝑧) = 0. Hence 𝑙𝑖𝑚𝑛𝐴𝑦𝑛 = 𝑙𝑖𝑚𝑛𝐵𝑥𝑛 = 𝑙𝑖𝑚𝑛𝑇𝑥𝑛 =

𝑙𝑖𝑚𝑛𝑆𝑦𝑛 = 𝑧 = 𝐵𝑢, for some u in X. From the proof of Theorem 3.3, we can easily prove that 𝑧 

is a common fixed point of A, B, S and T. Also one can easily prove the Theorem 3.4 if the pair 

(A, S) satisfies CLRA property.Similarly we can complete the proof for cases in which AX or TX 

or SX is a closed subset of X. This completes the proof.  
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Example 3.1 Let 𝑋 = [2,20]with the metric 𝑑  defined by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. Define the self 

mappings𝐴, 𝐵, 𝑆 and 𝑇 on 𝑋 by  

𝐴𝑥 = {

12 𝑖𝑓 2 < 𝑥 ≤ 5
𝑥 − 3 𝑖𝑓 𝑥 > 5
2 𝑖𝑓 𝑥 = 2.

,              𝐵𝑥 = {
2 𝑖𝑓 𝑥 = 2
6 𝑖𝑓 𝑥 > 2

 

𝑆𝑥 = {

6 𝑖𝑓 2 < 𝑥 ≤ 5
𝑥 𝑖𝑓 𝑥 = 2
2 𝑖𝑓 𝑥 > 5.

and          𝑇𝑥 = {
𝑥 𝑖𝑓 𝑥 = 2
3 𝑖𝑓 𝑥 > 2

. 

Define  𝜓: [0, ∞) → [0, ∞) is a continuous and non-decreasing function with 𝜓(𝑡)< 𝑡 for each 

𝑡 > 0.  Taking < 𝑥𝑛 >=< 5 +
1

𝑛
>  , it is clear that the pair (𝑆, 𝐴)  and (𝐵, 𝑇)  are weakly 

compatible mappings. Therefore, all the condition of Theorem 3.1 are satisfied, then we can 

obtain 𝑆2 = 𝑇2 = 𝐴2 = 𝐵2 = 2, so 2 is a common fixed point of  𝑆, 𝑇, 𝐴 and 𝐵. In fact, 2 is the 

unique common fixed point of 𝑆, 𝑇, 𝐴 and 𝐵. 

 

4.APPLICATION 

In 2002 Branciari [1] obtained a fixed point theorem for a single mapping satisfying an analogue 

of a Banach contraction principle for integral type inequality.  

Theorem   4.1. Let (X, d) be a complete metric space. 𝑓 ∶  𝑋 →  𝑋 a mapping such that, for each 

𝑥, 𝑦 ∈  𝑋, 

∫ 𝜑(𝑡) 𝑑𝑡 ≤ 𝑐∫ 𝜑(𝑡) 𝑑𝑡
𝑑(𝑥,𝑦)

0

𝑑(𝑥,𝑦)

0

 

𝑐 ∈  [0, 1),  where 𝜑 ∶  𝑅+  →  𝑅+ is a “Lebesgue-integrable function” which is summable, 

nonnegative, and such that, for each  ∈ > 0, ∫ φ(t)dt >  0.
∈

0
 Then 𝑓 has a unique fixed point 𝑧 ∈

 𝑋 such that, for each 𝑥 ∈  𝑋, lim
𝑛→∞

𝑓𝑛 =  𝑧. 

Now we prove the following theorem as an application of theorem 3.1. 

Theorem 4.2Let 𝐴, 𝐵, 𝑆 and 𝑇 be self mappings on a metric space (𝑋, 𝑑) satisfying the following 

conditions: 
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(C1), (C3) and the following: 

∫ 𝜑(𝑡) 𝑑𝑡 ≤ ∫ 𝜑(𝑡) 𝑑𝑡
𝑀(𝑥,𝑦)

0

𝑑3(𝑆𝑥,𝑇𝑦)

0

 

𝑀(𝑥, 𝑦)  = 𝜓 {

d2(Ax, Sx)d(By, Ty), d(Ax, Sx)d2(By, Ty),

d(Ax, Sx)d(Ax, Ty)d(By, Sx),

d(Ax, Ty)d(By, Sx)d(By, Ty)

} 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 : [0, ∞) → [0, ∞) is a continuous and non-decreasing function with 

𝜓(𝑡) <  𝑡  for each 𝑡 > 0.    Further, where 𝜑 ∶  𝑅+  →  𝑅+  is a “Lebesgue-integrable over 

𝑅+function” which is summable on each compact subset of 𝑅+, non-negative, and such that for 

each ∈> 0,  

∫ φ(t)dt >  0.
∈

0

 

Moreover, assume that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible, then A, B, 𝑆 and 𝑇 

have a unique common fixed point. 

Proof. The proof of the theorem follows on the same lines of the proof of the theorem 3.1. On 

setting φ (t) = 1, we get theorem 3.1. 

Remark4.1.Every contractive condition of integral type automatically includes a corresponding 

contractive condition not involving integrals, by setting φ (t) = 1. 
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