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1 | INTRODUCTION

Menger! introduced the notion of probabilistic metric spaces as a generalization of metric space. The notion of Proba-
bilistic Metric space in the Menger theory refers to situations where we know the probabilities of possible values of the
distance, but we do not know precisely the distance between two points. Menger explained in his note how the numerical
distance between two points « and y could be replaced by a function F(z, ¢, 7), whose value F(z, y,?) is interpreted at
the real number Z as the probability that the distance between = and g is less than Z. In fact the analysis of these spaces
got an impetus with Schweizer and Sklar’s pioneering work.? In probabilistic functional analysis the theory of probabilis-
tic metric space is of paramount importance particularly due to its extensive applications in random differential as well
as random integral equations.

Definition 1. (2) A distribution function J : Rt — R* is a left continuous and non-decreasing function with
infld(w) : w € R"} =0and sup{J () : « € R*} = 1. T is the set of all distribution functions and H be the Heaviside

function defined by H(¢) = {3 ’ ; :g

Definition 2. (1) A pair (D, F) is a PM-space, where ® is a nonempty set and F: D X D x [0,1] —» ¥ is a mapping
satisfying the following propertied for all «, ¢, « € D and 7, 5 > 0,

(p1) F(w, v, 2) = 1iffe = v;

(p2) F(w,v,0) = 0;

(p3) F(w,v,7) = F(v, w, ?);

(p4) F(w,v,¢) =1and F(z, w,3) =1,then F(w,w, (£ + 3)) = 1.
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Every metric space (D, d) can always be realized as a PM-space by F(z,¢.Z) = H(Z —d (n#,¢)),¥Y n,¢ € D,and H
be the Heaviside function defined by

1, >0
H) = and F: XD - Z.
<0

s

Probabilistic Metric space has a broader context than the metric space, which encompasses much broader statistical
situations.

Definition 3. (2) A mapping A :[0, 1] x [0, 1] — [0, 1] is called a Z-norm if for all a, b, c € [0, 1],

(1) A(a,1)=a,A(0,0)=0;

(2) A(a,b) = A(b,a);

(3) A(c,d) > A(a,b) forc > a,d > b;
(4) A(A(a, b), ¢) = Aa, A(b, ¢)).

Example 1. The four basic Z-norms are minimum Z-norm, product Z-norm, Lukasiewicz Z-norm and weakest Z-norm,
the drastic product.

Definition 4. (1) A Menger space is a triplet (D, F, A), where (D, F) is a PM-space and A is a Z-norm satisfying the
property,
(ps) F(u,w, (£ + 3)) 2 A(F(w, v, ), F(v, w, 3)),Vu,v,w € Dand £,4 > 0,

Example 2. Let ® =R, A (a, b) =min(a,b),Va,be[0,1] and

H(), w#v 0,Z<0
F(u,v,7) = ;  where H(Z) =
1, w=v 1,7 > 0.

Then (D, F, A)is a Menger space.
Definition 5. (3) A sequence {z,} in Menger space (D, F, A) is said to be:

(i) convergent at a point « € D if for every ¢ >0 and 4 > 0, there exists a positive integer N, ; s.t F(z,, w,€) >1—A4,
foralln> N¢ ;.
(ii) a Cauchy sequence in D if for every e > 0 and A > 0, there exists a positive integer N, ; s.t F(zn, Zm,€) >1— A, for
alln,m>N,,.
(iii) complete if every Cauchy sequence in D is convergent in D.

Weakly commuting mappings were introduced by Jungck in 1996.

Definition 6. (4) Two self-mappings £ and ¢ in a Menger space (D, F, A) are weakly commuting if F(£ gz, gfz,?) >
F(fz,gzx,?),forall z € Dand 7 > 0.

Jungck® extended the Definition 6 to compatible mappings. In 1991, Mishra® introduced the notion of compatible
mappings in the setting of PM-space.

Definition 7. (3) Two self-mappings £ and g in a Menger space (D,F,A) are said to be compatible if
limyoF(fgzn, gfxn ) =1, whenever {z,} is a sequence in D such that lim,_ £z, = lim,_ gz, = w for some
w € D and for all Z > 0.

Definition 8. Two self-mappings ¢ and ¢ in a Menger space (D,F,A) are said to be non-compatible if either
lim,F(fgzn,gfxn1)is non-existent or not equal to one, whenever {z, } is a sequence in D such that lim,_. £z, =
limy— g x, = w for some w+ € D and for all 7 > 0.

Definition 9. (6) Self maps £ and ¢ of a Menger space (D, F, A) are said to be weakly compatible (or coincidentally com-
muting) if they commute at their coincidence points, that s, if £z = g« for some 2 € D then £ g2 = g £ 2. The concept
of commuting mappings, weakly commuting mappings, weakly compatible mappings, compatible and non-compatible
mappings in different other spaces has been introduced by the researchers [see, 7-12]. With the help of E.A, CLRg and
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JCLR property many authors have proved common fixed point theorems in different spaces [see 13-15]. Also, by using
Meir Keeler type contractions and ¢-y type conditions various fixed point results are proved [see, 16-19].

Definition 10. (20) A pair of self-mappings (£, ¢) on a Menger space (D, F, A) is said to satisfy the property (E.A) if
there exists a sequence {«,} in D such that lim F(fun, w,?) = limF(guny,w,?) =1, forsome v € Dand V¢ > 0.

n—oo

Definition 11. The pairs (A, S) and (53, J) on a Menger space (D, F, A) are said to satisfy the common property (E.A) if
there exist two sequences {z,} and {¢,} in D s.t.

lim Apn, = limSn, = limBg, = limJg¢, = » for some » € D.
n—oo n—-oo n—oo

n—-oo

Imdad?! presented the JCLRsr property in 2012.

Definition 12. (21) The pairs (A, S) and (3, J) on a Menger space (D, F, A) are said to satisfy the JCLRgr property if
there exist two sequences {z2,} and {¢,} in D s.t.

limF(Apn, w,t) = imF(Spun, w,t) = imF(Bgn,w, %) = imF(J gn.w,?) =1, where w = Sx = T x,
n—co n—oo n—co n—oo

for some ¥ € D.

Example 3. Let (D, F,A) be a Menger space with ® =[-1,1] and F(z,¢,?¢) = f+|;—¢\ forall »z,¢ € D, >0 and

F(7,¢,0) = 0,where A(a, b) = min {a, b} for all a, b € [0, 1]. Define A, 13, S and T self mapson D as Ap = % Bn = %

Sn=nTznr=—-pforall o € D. Then with sequences {2, } = {%} and {¢,} = {;—i} in @, all are equal to 0, that is,

lim Ap,= limSpn, = limBg,= limJ¢,=S0=7J0=0.
n—-oo n—-oo n—oo

n—oo

Clearly, the pairs (A, S) and (3, T') satisfy JCLRsr property.

2 | MAIN RESULTS

Theorem 1. Let A,B,S and 7 are four self maps on a Menger space (D, F,A) with A(a, b) = min{a, b} for
all a, b € [0, 1] satisfying the following conditions,

HAD)CT(D), BOD) CSOD);
(ii) for e >0 and for all 2, ¢ € D, there exists a 6 €(0, €) s.t
€e—6<m(n,g,t) <eimplies F(An, Bg,7) > ¢,
where m(z, ¢,Z) = min{F(Sn,T¢,%), F(An,Sn, %), F(Bg,T¢,7)};
(iii) one of AD, BD, SD or T D is a complete subspace of D.
Then Av¢ = x = Sv and Bw = x = T v. Also, if the pair (A, S) as well as ()3, T) are weakly compatible, then Ax =
Bz =Sx =T zx = x,and % is unique in D.

Proof. Since A(D) C T (D). Consider a point zg € D, then there exists 7z, € Ds.t Apy =T 221 = ¢o. For the point 2,
there exists 22, € D such that Bz; = Sz, = ¢1. Continuing in this way, we have {{ z,} and ¢,}in D s.t

Gon = Spam = Bron1;=T fon-1 = Ap2on—

We claim that {¢,} is a Cauchy sequence in D.

Let F, = F(gn, ¢ni1,2) and &, = F(g@n, gns1,Z), Where Z > 0.

The two cases arise, suppose that 7, =1 for some n = 2k —1, then F(¢axk-1, @2, ¢) = 1. Then ¢x_1 = ¢ gives
T 722k-1 = Apok—2 = Sk = Brpog-1, s0 T and B have a coincidence point. Again if 7, =1 for some n = 2k, then
F(g2ks Gak+1,7) = 1. Then gk = goks1 gives T popr1 = Aok = S ok = Bpak-1, S0 A and S have a coincidence point.

Next assume that F,, # 1foralln.Ifsome 2, ¢ € D,m(n,¢,¢) = 1,thenweget Az = Spand T ¢ = B¢. This proves
the result.
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Ifm(n,¢,7) < 1,forall pn,¢ € D, then, by,

F(An,Bg,t) > m(n,¢,17) €))
We have,

Fan-1 = F(gan-1, @20, 2) = F(Apan-2, Bpon-1,7)
> M(722n-2, P22n-1,7)
= min{F(Span-2,T p22n-1,7), F(Ap22n-2, S 22n-2,7), F(Bpan-1, T p22n-1,7)}
= min{F(gan-2, @an-1,7), F(@an-1, 92n-2, 1), F (@20, @2n-1,7)}
= min{Fan-2, Fan-1} = Fan-a- 2

S0, Fon-1 > Fon—a

Similarly, Fa, > Fan-1-
Therefore one can find that F7,, > F,,_; for all n.
Thus in [0, 1], { F,, }a sequence of positive real numbers is a strictly increasing.
Hence {F,} — some limit say s. 3)
Next we prove that s =1. If s#1, then by (3),3aé>0and me N s.tVn>m,

5—6<F(gn gn1,2) =Fn <8 4

In particular, m(zzp-2, 22n-1,7) = min {Fap, Fou-1}= Fap-1,
we gets — 6 < Fap—1 < p. Therefore, by using (ii),

F(Apnan, Bran-1,7) = F(@ans1, @ons7) = Fan > 8,

This is a contradiction. Hence s = 1, that is, lim F,, = lim F(¢,, ¢ns1,7) = 1.
n—-oo n—oo
Now, for ke Z+,

F(@n tnitol) 2 F (@n guits £) AT (Gnits gmizn £) B oo AF (Gmstot Fneio £ )-
Since lim F (¢, ¢ni1,Z) = 1 for £ > 0, it follows
n—oo

im F(@n, gni1, £) > 1A1A ... A =1,
n—oo

Then {¢,} is a Cauchy sequence in D.

Now by (iii) assume that SDis a complete subspace in D, then the subsequence ¢, = S22, must have a limit x in
S®and ¢ € S7(x), so that S¢ = x. As the sequence {¢,,} is contained in {¢,}, and {¢,} is a Cauchy sequence then
the sequence {¢,} also converges to x. First we prove that A« = x. If Av # x. Then, on setting # = vand ¢ = 2,1 in
(ii), we have for Z > 0,

F(Av, Bpap-1,7) > m(v, 722n-1,7)
= min{F(Sv, T pan-1,7), F(Av, Sv,7), F(Bpan-1, T p2an-1,7)}.
Taking the limitasn — oo,
F(Av,2,7) > min{F(x,%2,7), F(Av, %,7), F(x,%,7)} = F(Av, %,7),

this gives a contradiction. Therefore, Av = x = Sv.
AS(DCT(D®D),Av =% =2 € J(D). Letw € J ' (»),then Jw = %.
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Next we claim that Bew = x. If Buw # %, then on setting 2 = ¢,, and ¢ = w in (ii), we get for Z > 0,
F(Agan, Buw, ) = F(gani1, Bur, ) > m(gan, w, 1)
= min{F(Sgom. Tw, ), F(Agan, Sqm, ), FBw, T w,?)},
Taking the limitas n — oo,
F(x, Bu,?) > min{F(x,%,%), F(x,%,%), F(Bw, %2,7)} = F(Bw, %,%),

is a contradiction. Therefore, Bw = x = T w-.

Hence we have shown that x = Sv = Av = Buw = T w.

If we assume 7 (D) is complete, we get the same. If A(D) is complete, then » € A(D) C T (D) and if B(D) is complete,
then x € B(D) C S(D). As (A, S) and (B, T) are weakly compatible, then Ax = AS¢v = SAv =Sxand Bx = BT w =
TBuw=Tx.

Finally we claim that Ax = x. If Ax # %, then on setting » = x and ¢ = w in (ii), we have for Z > 0,

F(Ax,Bw,?)=F(Ax,%,2) > m(x,x,7)
=min{F(Sx,Tw,?),F(Ax,Sx,%), FBw,Tw,1)}
=min{F(Ax,x%,2),F(Ax, Ax,{),F(x,%x,7)} = F(Ax,x,7)

this gives a contradiction. Therefore, Ax = x.
Similarly, we prove Bx = x and the proof of uniqueness can be found from (ii).
Thus Ax = Bx = Sx =T x = %, and x is unique in D.

Example 4. Let (D,F,A) be a Menger space with D = [2,20] and F(z,¢,%) = f+|;—¢\ forall #,¢ € D,7 >0 and
F(7,¢,0) = 0, where A(a, b) = min{a, b} for all a, b € [0, 1]. Define A, B, S and J self maps on D by

2Qifp=20rp>>5 2ifp=20rp>5
Apn = , Bn=
rn+1lif2<pn<5 n+2if2<n<5

2 ifp=2 .
) 2ifp=2o0rp>>5
Sn=48 if2<n<5 Tr= Lif 2 e
+11 <n<
22 if n>s, ” ”

Then A, B, S and 7 satisfies all the axioms of Theorem 1 and A2 = B2 =52 =72 = 2, and 2 is unique in . Also,
all are discontinuous at z = 2 and S(D) be complete subspace in D.

Now we are looking to prove Theorem 1 by using common property (E.A), as it relaxes, A(D) C T (D) or B(D) C
S(D).

Theorem 2. Let A, 3, S and 7 are four self maps on a Menger space (D, F, A) with A(a, b) = min{a, b}, Va, b€ [0, 1]
satisfying (ii) and the following conditions,

(iv) pairs(.A, S) and (BB, T) holds (E.A) common property.

V) SD or TD are closed in D.

Then Aw = #» = Sw and Be = ». = T ¢. Also, if the pair (A, S) as well as (B3, T) are weakly compatible, then A#» =
Bz = S» =T#» =7, and »is unique in D.
Proof. .From (iv), there exist two sequences {22, } and {¢,} in Ds.t

limAp, = limSp, = limBg, = limT ¢, = » for some » € D.
n—-oo n—oo n—oo n—oo

Now S(9D) is closed in D, there exists a point « € D such that » = Sw. n
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First we claim A« = 7. If Aw # 7, then on setting » = « and ¢ = ¢, in (ii), we have for Z > 0,
F(Aw, Bgn,?) > m(«, ¢n, 1)
=min{F(Su,T gn, ), F(Aw,Su, ), FBgn, T gn,?)}
Taking the limitas n — oo,
F(Aw,7,¢) > min{F(»,7»,7), F(Aw,7»,¢), F(»,7,¢)} = F(Aw, 7, ?),

this is a contradiction. Therefore, A« = » = S«.
Now T (D) isclosed in D, lim T ¢, = » € T (D), so there exists a point v € Ds.t Tev = » = Aw = Sw.
n—-oo

Now we claim that that Bu = #. If B # #, then on setting 2 = « and ¢ = » in (ii), we have for ¢ > 0,

F(Aw, B, Z) > m(w,v,?) = min{F(Sw,Tv, ), F(Aw, Sw, ), F(Be, T v, )}
F(#, Bv,t) > min{F(», »,¢), F(»,7,7), F(Bv,»,7)} = F(Bv,»,7)

this is a contradiction. Thus, B« = » and therefore Bu = » = T ¢.

As (A, S) and (B, T) are weakly compatible, then A« = Sw, Bv =T v, Ar = ASw = SAu = Srand Br = BT v =
TBy=Tr.

Now we claim that Az = ». If A#» # #, then on setting 2 = » and ¢ = » in (ii), we have for Z > 0,

F(A#, Bv,Z) = F(A»,v,2) > m(#», v, 1)
=min{F(S», T v, 1), F(A», S», 1), FBuv, T v,%)}
=min{F(A#,», 1), F(A#», A», L), F(»,#,2)} = F(A#»,#,7),

gives a contradiction. Therefore, A» = #.
Similarly, one can prove B = » and the uniqueness can be taken out from (ii).
Thus A» = Bz = S» =T » = »,and » is unique in D.

Example 5. Let (D,F,A) be a Menger space with D =[2,20] and F(z,¢.%) = t‘+|;—4| for all z,¢ € D,¢ > 0and

F(7,¢,0) = 0 where A(a, b) = min{a, b} for all a, b € [0, 1]. Define A, B, S and T self maps on D by

An =

2Qifp=20rpn>>5 By — 2ifp=20rp>5
n+lif2<np<5 n+2if2<p<5

2ifp=2o0rp>5 2ifp=2o0rp>5
Sn = Trn= :
rn+1lif2<n<5 9 if2<pu<5
Take {71” =53 %} and {{;n —54 %} Then lim App= limSpn = lim Bgn= limT g, =2 € D. Then A, B,S
n—oo n—oo n—oo n—oo
and 7 satisfy all the axioms of Theorem 2 and A2 =/B2=S2=72=2, and 2 is unique in ®. All are discontin-
uous at z =2 and S(D) be complete subspace in D. Here SD and 7D are closed in D. Also, B(D) £ S(D) or
A(D) L T(D).
Next, an effort was made to eliminate the closeness of the subspaces from Theorem 2 by using the JCLRgr property.

Theorem 3. Let A, B, S and T are four self maps on a Menger space (D, F, A) with A(a, b) = min{a, b}, Va, b0, 1]
satisfying (ii) and the property,

(vi) pairs(A, S) and(3, T) holds JCLRgr property.
Then Ax = Sx and Bx = T x. Also, if the pair (A, S) as well as (3, 7) are weakly compatible, then A« = Bu =
Sw =Tw = wu,and « is unique in D.
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Proof. As (A, S)and (53, T) holds JCLRgr property, there exist two sequences {z,} and {¢,} in D s.t
limF(Apn,w,?) = limF(Spn,w,t) = limFBgp,w,?) = imFT gnw,?) =1,
n—oo n—oo n—oo

n—oo

where «w = Sx = T %, for some x € D. n

First we claim that Ax = Sx. If Ax # Sx, then on setting # = xand ¢ = ¢, in (ii), we have for Z > 0,
F(Az,Bgn, 7)) > m(x, gn, )
=min{F(S%,T gn &), F(Ax,Sx,2), FBgn, T gn,1)}.
Taking the limit as n — oo,
F(Ax,S%,7) > min{F(S%,5%,7), F(Ax%,5%,7), F(S%,5%,7)} = F(A%,Sx%,7)

this is a contradiction. Therefore, Ax = Sx.
Now we claim that that Bz = T x. If Bx # T %, then on setting » = xand ¢ = % in (ii), we have for Z > 0,

F(Ax,Bx,2) > m(x,%,2) = min{F(Sx,T %2,¢), F(A%x,S%,7), FBx,T %2,7)}
F(T x2,Bx,2) > min{F(S%,Sx,%),F(T %2, T %2,1), F(Bx,T %2,1)} = F(Bx, T %,%),

is a contradiction. Therefore, Bx = T x.

Now v =Sx=Tx2=Bx=Tx. As (A,S) and (B3,T) are weakly compatible, then Ax = Sx,Bx =T %, Au =
ASx=8A%=Suand Bu =BT =T Bx=Tu.

Now we claim that A« = «. If Aw # «, then on setting 2 = wand ¢ = x in (ii), we have for Z > 0,

F(Aw,Bx,t)=F(Auw,x%2,2) > m(u,x,7)
=min{F(Su,T%,2),F(Aw,Su,1),F(Bx,Jx,7)}
=min{F(Aw,uw,?), F(Aw, Au, %), F(u,u,t)} = F(Au,w,?)

is a contradiction. Therefore, A = «.

Similarly, one can prove B« = « and the uniqueness can be proved from (ii).

Thus Aw = Bu = Su = Tw = u, and « is unique in D.
Example 6. Let (D,F,A) be a Menger space with D =[2,20] and F(z,¢,?) = z‘+\;—¢| forall »,9 € D,7 >
0 and F(z,¢,0)=0, where A(a, b) = min{a, b} for all a, be[0, 1]. Define A,B,S and 7 self maps
on D by

2Qifp=20rp>5 2Qifp=20rp>5
An = , Bp=
n+1lif2<np<5 7+2if2<np<5

2Qifp=20rp>5 2Qifp=20rp>5
Sn= Trn= ’
7+1lif2<n<5 7+9 if2<p<5

Take {pn =5 & i} and {{;n =5+ i} Then lim Apn= lim Sy = lim Bgn= limT ¢n =2 € D. Thus A, B, S
n—oo n—oco n—oco n—oo
and J satisfy all axioms of Theorem 3 and A2=B2=S2=/J2=2, and 2 is unique in ®. Also, all are
discontinuous at 2 = 2 and S(D) be complete subspace in D. Here SD and JD are closed in D. Also, B(D) € S(D) or
AD) € T (D).
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3 | CONCLUSION

We have proved some common fixed point theorems for self-maps in Menger spaces with minimum ¢-norm satisfying
some Meir-Keeler type contractive condition in which two pairs of mappings are weakly compatible and have coincidence
point. We have also proved the results with E.A property and JCLRsy property.
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