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Abstract. In the present paper, first we introduce generalized  𝜓 − ∅ −weak contraction condition that involves 

cubic and quadratic terms of distance function 𝑑(𝑥, 𝑦) and then proved common fixed point theorems for compatible 

mappings. Secondly, we deal with variants of compatible mappings type (K), type (R) and type (E). At the end, we 

provide applications of our results.   
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1. INTRODUCTION 

Banach fixed point theorem is the basic tool to study fixed point theory and shows the 

existence and uniqueness of a fixed point under appropriate conditions. This theorem provides a 

technique for solving a variety of applied problems in mathematical sciences and engineering. 

Most of the problems of applied mathematics reduce to inequality which in turn their solutions 
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give rise to the fixed points of certain mappings. It was the new era of the fixed point theory 

literature when the notion of commutativity mappings was used by Jungck [5] to obtain a 

generalization of Banach’s fixed point theorem for a pair of mappings. The first ever attempt to 

relax the commutativity to weak commutativity was initiated by Sessa [21]. In 1986, Jungck [6] 

introduced more generalized commutativity, so called compatibility. Ever since the introduction 

of compatibility, the study of common fixed points has developed around compatible maps and 

its weaker forms and it has become an area of vigorous research activity. Notice that the notions 

of weak commutativity and compatibility differ in one respect. Weak commutativity is 

essentially a point property, while the notion of compatibility uses the machinery of sequences. 

However, fixed point theory for non compatible mappings is equally interesting and Pant [18] 

has initiated some work along these lines. It may be observed that the mappings 𝒻 and ℊ are said 

to be non compatible if there exists a sequence {𝓍𝑛}  in 𝔙  such that for some 𝓉  in 𝔙,  but 

lim
𝑛→∞

𝒹(𝒻ℊ𝓍𝑛, ℊ𝒻𝓍𝑛) is either non-zero or nonexistent. In 1996, Jungck [8] introduced the notion 

of weakly compatible mappings and showed that compatible maps are weakly compatible, but 

not converse may not be true. In 1998, Pant [17] introduced a new notion of continuity and 

called it reciprocally continuous mappings. In 2001, Sahu et al. [22] introduced the notion of 

intimate mappings in metric spaces. Intimate mappings are more improved version of weakly 

commuting, semi-compatibility and R-commutativity etc. Sahu et al. [22] have also shown that 

intimate mappings are more general than compatible mappings. The most crucial feature of 

intimate mappings is that these mappings do not necessarily commute at a coincidence point. It is 

the generalization of compatible mappings of type (A). In 2004, Rohan et al. [20] introduced the 

concept of compatible mappings of type (R) by using the notion of compatible mappings and 

compatible mappings of type (P) together. In 2007, Singh and Singh [23] introduced the concept 

of compatible mappings of type (E) by rearranging terms of compatible mappings of type (P) and 

compatible mappings. In 2014, Jha et al. [11] introduced the concept of compatible mappings of 

type (K) by modification in compatible mappings of type (P) in a metric space. In 1993, Jungck 
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et al. [10] introduced the notion of compatible mappings of type(A) which is equivalent to 

concept of compatible mappings under some conditions. 

Banach fixed point theorem states that every contraction mapping on a complete metric 

space has a unique fixed point. Let  (𝔙, 𝒹)   be a complete metric space. If 𝒯: 𝔙 →

 𝔙  satisfies 𝒹(𝒯(𝓍), 𝒯(𝓎))  ≤  𝑘(𝒹(𝓍,𝓎)) for all 𝓍, 𝓎 ∈  𝔙, 0 ≤ 𝑘 < 1, then it has a unique 

fixed point.   

In 1969, Boyd and Wong [3] replaced the constant 𝓀 in Banach contraction principle by a 

implicit function 𝜓 as follows: 

Let (𝔙, 𝒹)  be a complete metric space and 𝜓 ∶  [0 ,∞) → [0,∞)  be upper semi 

continuous from the right such that 0 ≤  𝜓(𝓉) < 𝑡 for all  𝓉 > 0. 

If  𝒯:𝔙 →  𝔙 satisfies  𝒹(𝒯(𝓍), 𝒯(𝓎)) ≤ 𝜓(𝒹(𝓍,𝓎)), for all 𝓍,𝓎 ∈  𝔙,  then it has a 

unique fixed point. 

In 1997, Alber and Gueree-Delabriere [1] introduced the concept of weak contraction as 

follows: A map 𝒯:𝔙 →  𝔙 is said to be weak contraction if for each 𝓍,𝓎 ∈  𝔙, there exists a 

function ∅ : [0, ∞) → [0, ∞), ∅ (𝓉) > 0 for all 𝓉 > 0 and ∅ (0) = 0 such that  

𝒹(𝒯(𝓍), 𝒯(𝓎)) ≤ 𝒹(𝓍, 𝓎) − ∅ (𝒹(𝓍,𝓎)). 

In connection with control function 𝜓: ℝ+ → ℝ+ different authors have considered some of the 

following properties: 

(i) 𝜓 is non decreasing 

(ii) 𝜓(𝓉) < 0,for all 𝓉 > 0. 

(iii) 𝜓(0) = 0 

(iv) 𝜓 is continuous 

(v) lim
𝑛→∞

𝜓𝑛(𝓉) = 0,for all 𝓉 ≥ 0. 

(vi) ∑ 𝜓𝑛(𝓉)∞
𝑛=0  converges for all 𝓉 > 0,𝜓𝑛is the 𝑛th iterate 

(vii) 𝜓(𝓉) = 0 iff 𝓉 = 0 
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(viii) 𝜓(𝓉) > 0 for all 𝓉 ∈ ℝ+\{0) 

(ix) lim
r→𝓉+

𝜓(𝓉) < 0,for all 𝓉 > 0. 

(x) lim
𝓉→∞

𝜓(𝓉) = ∞. 

(xi) 𝜓 is lower semi continuous 

Here we note that 

 (i) and (ii) implies (iii) ; 

 (ii) and (iv) implies (iii) 

 (i) and (v) implies (ii) 

A function 𝜓 satisfying (i) and (v) that is 𝜓 is non decreasing and lim
𝑛→∞

𝜓𝑛(𝓉) = 0, for all  𝓉 ≥ 0 

is called as a comparison function.  

 

2. PRELIMINARIES 

In 1996, Jungck [8] introduced the notion of weakly compatible mappings and showed 

that compatible maps are weakly compatible, but converse may not be true.   

Definition 2.1[8] Two self-mappings 𝒻  and ℊ  of a metric space (𝔙, 𝒹) are called weakly 

compatible if they commute at their coincidence point i.e., if 𝒻𝓊 = ℊ𝓊 for some 𝓊 ∈ 𝔙, then  

𝒻ℊ𝓊 = ℊ𝒻𝓊.  

In 1982, S. Sessa [21] generalized the concept of commutativity to the notion of weak 

commutativity of maps. Thereafter, in 1986, Jungck [6] generalized and extend the notion of 

weak commutativity to compatible mappings. 

Definition 2.2[6] Two self-mappings 𝒻 and ℊ of a metric space (𝔙, 𝒹) are called compatible if 

𝑙𝑖𝑚𝑛𝒹(𝒻ℊ𝓍𝑛, ℊ𝒻𝓍𝑛) = 0, whenever {𝓍𝑛} is a sequence in 𝔙 such that  

  𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉,for some 𝓉 in  𝔙.  

Now we state some properties for compatible mappings that are fruitful for further study. 
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Proposition 2.1[6] Let 𝒮 and 𝒯 be compatible mappings of a metric space (𝔙, 𝒹) into itself. If 

𝒮𝓉 =  𝒯𝓉 for some 𝓉 in  𝔙, then 𝒮𝒯𝓉 =  𝒮𝒮𝓉 =  𝒯𝒯𝓉 =  𝒯𝒮𝓉. 

Proposition 2.2 [6] Let 𝒮 and 𝒯 be compatible mappings of a metric space (𝔙, 𝒹)  into itself. 

Suppose that  𝑙𝑖𝑚𝑛𝒮𝑥𝑛 = 𝑙𝑖𝑚𝑛𝒯𝑥𝑛 = 𝓉 for some 𝓉 in  𝔙. Then the following holds: 

(i) 𝑙𝑖𝑚𝑛𝒯 𝒮𝑥𝑛 = 𝒮𝓉 if 𝑆 is continuous at 𝓉; 

(ii) 𝑙𝑖𝑚𝑛𝒮𝑇𝑥𝑛 = 𝒯𝓉 if 𝒯 is continuous at 𝓉; 

(iii) 𝒮𝒯𝓉 =  𝒯𝒮𝓉  and  𝒮𝓉 =  𝒯𝓉 if  𝒮 and 𝒯  are continuous at 𝓉. 

Now we introduce the generalized 𝜓 −∅-weak contraction for a pairs of mappings in the 

following way: 

Let 𝒮, 𝒯,𝒜  and ℬ  are four self mappings on a metric space (𝔙, 𝒹)  satisfying the following 

conditions: 

(C1)  𝒮(𝔙) ⊂ ℬ(𝔙),𝒯(𝔙) ⊂ 𝒜(𝔙); 

      (C2)    𝒹3(𝒮𝓊, 𝒯𝓋) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓊, 𝒮𝓊)𝒹(ℬ𝓋,𝒯𝓋),

𝒹(𝒜𝓊, 𝒮𝓊)𝒹2(ℬ𝓋, 𝒯𝓋),
𝒹(𝒜𝓊, 𝒮𝓊)𝒹(𝒜𝓊,𝒯𝓋)𝒹(ℬ𝓋, 𝒮𝓊),
𝒹(𝒜𝓊,𝒯𝓋)𝒹(ℬ𝓋, 𝒮𝓊)𝒹(ℬ𝓋, 𝒯𝓋)}

 

 
− ∅ {𝓂(𝒜𝓊,ℬ𝓋)},   

where           𝓂(𝒜𝓊,ℬ𝓋) = 𝑚𝑎𝑥

{
 

 
𝒹2(𝒜𝓊,ℬ𝓋), 𝒹(𝒜𝓊, 𝒮𝓊)𝒹(ℬ𝓋,𝒯𝓋),

𝒹(𝒜𝓊, 𝑇𝓋)𝒹(ℬ𝓋, 𝒮𝓊),

1

2
[
𝒹(𝒜𝓊, 𝒮𝓊)𝒹(𝒜𝓊,𝒯𝓋)

+𝒹(ℬ𝓋, 𝒮𝓊)𝒹(ℬ𝓋,𝒯𝓋)
]

}
 

 
 

for all 𝓊,𝓋 ∈ 𝔙, where 𝜓: [0, ∞) → [0, ∞) is a continuous and non-decreasing function with 

𝜓(𝓉)  < 𝓉 for each 𝓉 > 0 and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝓉) = 0 ⇔𝓉 = 0 

and ∅(𝓉) > 0 for each 𝓉 > 0. 

In this section, we prove a result for compatible mappings that satisfy generalized  𝜓 −

 ∅ −weak contraction involving cubic and quadratic terms of distance function.                                                                                                                                                                    

Theorem 2.1 Let (𝔙, 𝒹) be a complete metric space. Let 𝒮, 𝒯,𝒜 and ℬ  are four mappings of a 

complete metric space (𝔙, 𝒹)  into itself satisfying (C1) and (C2) and the following conditions:   

(2.1)     one of 𝒮, 𝒯,𝒜 and ℬ   is continuous. 
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Assume that the pairs (𝒜, 𝒮)  and (ℬ, 𝒯)  are compatible. Then  𝒮, 𝒯,𝒜  and ℬ  have a unique 

common fixed point in 𝔙.  

Proof. Let 𝓍0 ∈ 𝔙 be an arbitrary point. From (C1) we can find 𝓍1 such that 𝒮(𝓍0) = ℬ(𝓍1) =

𝓎0 for this 𝓍1 one can find 𝓍2 ∈ 𝔙 such that 𝒯(𝓍1) = 𝒜(𝓍2) = 𝓎1.Continuing in this way, one 

can construct a sequence {𝓍𝑛} such that 

𝓎2𝑛 = 𝒮(𝓍2𝑛) = ℬ(𝓍2𝑛+1), 

𝓎2𝑛+1 = 𝒯(𝓍2𝑛+1) = 𝒜(𝓍2𝑛+2),  for each 𝑛 ≥ 0.                                                             (2.2) 

For brevity, we write 𝛼2𝑛 = 𝒹(𝓎2𝑛, 𝓎2𝑛+1) 

First, we prove that {𝛼2𝑛} is non-increasing sequence and converges to zero. 

Case I If n is even, taking 𝓊 = 𝓍2𝑛 and 𝓋 = 𝓍2𝑛+1  in (C2), we get  

𝒹3(𝒮𝓍2𝑛, 𝒯𝓍2𝑛+1)  ≤ 𝜓

{
 

 
𝒹2(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)

, 𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹
2(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓍2𝑛, 𝒮𝑥2𝑛)𝒹(𝒜𝓍2𝑛, 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓍2𝑛),

𝒹(𝒜𝓍2𝑛, 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓍2𝑛)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)}
 

 

 

                                                            −∅{𝓂(𝒜𝓍2𝑛, ℬ𝓍2𝑛+1)},  

where 

𝓂(𝒜𝓍2𝑛, ℬ𝓍2𝑛+1) = 𝑚𝑎𝑥

{
 

 
𝒹2(𝒜𝓍2𝑛, ℬ𝓍2𝑛+1), 𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓍2𝑛, 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓍2𝑛),
1

2
[

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(𝒜𝓍2𝑛, 𝒯𝓍2𝑛+1)

+𝒹(ℬ𝓍2𝑛+1, 𝒮𝓍2𝑛)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)
]

}
 

 

 

Using (2.2), we have 

𝒹3(𝓎2𝑛, 𝓎2𝑛+1)  ≤  𝜓

{
 

 
𝒹2(𝓎2𝑛−1, 𝓎2𝑛)𝒹(𝓎2𝑛, 𝓎2𝑛+1)

, 𝒹(𝓎2𝑛−1, 𝓎2𝑛)𝒹
2(𝓎2𝑛, 𝓎2𝑛+1),

𝒹(𝓎2𝑛−1, 𝓎2𝑛)𝒹(𝓎2𝑛−1, 𝓎2𝑛+1)𝒹(𝓎2𝑛, 𝓎2𝑛),

𝒹(𝓎2𝑛−1, 𝓎2𝑛+1)𝒹(𝓎2𝑛, 𝓎2𝑛)𝒹(𝓎2𝑛, 𝓎2𝑛+1)}
 

 

   

                                            −∅{𝓂(𝓎2𝑛−1, 𝓎2𝑛)}, 

where 

𝓂(𝓎2𝑛−1, 𝓎2𝑛) = 𝑚𝑎𝑥

{
 

 
𝒹2(𝓎2𝑛−1, 𝓎2𝑛), 𝒹(𝓎2𝑛−1, 𝓎2𝑛)𝒹(𝓎2𝑛, 𝓎2𝑛+1),

𝒹(𝓎2𝑛−1, 𝓎2𝑛+1)𝒹(𝓎2𝑛, 𝓎2𝑛),
1

2
[
𝒹(𝓎2𝑛−1, 𝓎2𝑛)𝒹(𝓎2𝑛−1, 𝓎2𝑛+1)

+𝒹(𝓎2𝑛, 𝓎2𝑛)𝒹(𝓎2𝑛, 𝓎2𝑛+1)
]

}
 

 

. 
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On using  𝛼2𝑛 = 𝒹(𝓎2𝑛, 𝓎2𝑛+1) in the above inequality we have 

                       𝛼2𝑛
3  ≤ 𝜓{𝛼2𝑛−1

2 𝛼2𝑛, 𝛼2𝑛−1𝛼2𝑛
2 , 0,0} − ∅{𝑚(𝓎2𝑛−1, 𝓎2𝑛)},                                 (2.3)                                                                                

where   𝑚(𝓎2𝑛−1, 𝓎2𝑛) = 𝑚𝑎𝑥 {𝛼2𝑛−1
2 , 𝛼2𝑛−1𝛼2𝑛, 0,

1

2
[𝛼2𝑛−1𝑑(𝓎2𝑛−1, 𝓎2𝑛+1) + 0]}. 

By using triangular inequality and property  𝜓 𝑎𝑛𝑑  ∅, we get  

𝒹(𝓎2𝑛−1, 𝓎2𝑛+1) ≤ 𝒹(𝓎2𝑛−1, 𝓎2𝑛) + 𝒹(𝓎2𝑛, 𝓎2𝑛+1) 

                             = 𝛼2𝑛−1 + 𝛼2𝑛   and                                                           

𝑚(𝓎2𝑛−1, 𝓎2𝑛) ≤ 𝑚
,(𝓍, 𝓎) = 𝑚𝑎𝑥 {𝛼2𝑛−1

2 , 𝛼2𝑛−1𝛼2𝑛, 0,
1

2
[𝛼2𝑛−1(𝛼2𝑛−1 + 𝛼2𝑛), 0]} .   

If 𝛼2𝑛−1 < 𝛼2𝑛  and using property of 𝜓 and  ∅, then (2.3) reduces to 

𝛼2𝑛
3 < 𝛼2𝑛

3 , a contradiction, therefore,  𝛼2𝑛 ≤  𝛼2𝑛−1. 

In a similar way, if n is odd, then we can obtain𝛼2𝑛+1 < 𝛼2𝑛. 

It follows that the sequence {𝛼2𝑛} is decreasing. 

Let lim
𝑛→∞

𝛼2𝑛 = 𝓇, for some 𝓇 ≥ 0. 

Suppose 𝓇 > 0; then from inequality (C2) and (2.2) and (2.3) we have  

𝓇3 ≤ 𝜓 (𝓇3) − ∅(𝓇2) < 𝓇3, a contradiction, therefore we get 𝓇 = 0.  Therfore 

lim
𝑛→∞

𝛼2𝑛 = lim
𝑛→∞

𝒹(𝑦2𝑛, 𝑦2𝑛+1) = 𝓇 = 0.                                                                                  (2.4)                                                   

Now we show that {𝓎𝑛} is a Cauchy sequence. Suppose that {𝓎𝑛} is not a Cauchy sequence. For 

given 𝜖 > 0, we can find two sequences of positive integers {𝑚(𝑘)} and {𝑛(𝑘)} such that for all 

positive integers 𝑘 , 𝑛(𝑘) > 𝑚(𝑘) > 𝑘. 

𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘)) ≥ 𝜖,   𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘)−1) < 𝜖                                                                         (2.5) 

Now      𝜖 ≤ 𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘)) ≤ 𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘)−1) + 𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑛(𝑘)) 

Letting 𝑘 → ∞,  and using (2.4) and (2.5), we get  lim
𝑘→∞

𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘)) =  𝜖 

Now from the triangular inequality, we have,  

|𝒹(𝓎𝑛(𝑘), 𝓎𝑚(𝑘)+1) − 𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘))| ≤ 𝒹(𝓎𝑚(𝑘), 𝓎𝑚(𝑘)+1). 

Taking limits as 𝑘 → ∞ and using (2.4) and (2.5),  we have  
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lim
𝑘→∞

𝒹(𝓎𝑛(𝑘), 𝓎𝑚(𝑘)+1) =  𝜖.            

On using triangular inequality, we have  

|𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘)+1) − 𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘))| ≤ 𝒹(𝓎𝑛(𝑘), 𝓎𝑛(𝑘)+1). 

Proceeding limits as 𝑘 → ∞ and using (2.4) and (2.5), we get  

lim
𝑘→∞

𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘)+1) =  𝜖.               

Similarly, we have   

|𝒹(𝓎𝑚(𝑘)+1, 𝓎𝑛(𝑘)+1) − 𝒹(𝓎𝑚(𝑘), 𝓎𝑛(𝑘))| ≤ 𝒹(𝓎𝑚(𝑘), 𝓎𝑚(𝑘)+1) + 𝒹(𝓎𝑛(𝑘), 𝓎𝑛(𝑘)+1). 

Taking limit as 𝑘 → ∞ in the above inequality and using (2.4) and (2.5),  we have 

lim
𝑘→∞

𝒹(𝓎𝑛(𝑘)+1, 𝓎𝑚(𝑘)+1) =  𝜖. 

On putting 𝓊 = 𝓍𝑚(𝑘)  and  𝓋 = 𝓍𝑛(𝑘) in (C2), we get  

𝒹3(𝒮𝓍𝑚(𝑘), 𝒯𝓍𝑛(𝑘))  ≤ 𝜓

{
 
 

 
 

𝒹2(𝒜𝓍𝑚(𝑘), 𝒮𝓍𝑚(𝑘))𝒹(ℬ𝓍𝑛(𝑘), 𝒯𝓍𝑛(𝑘))

, 𝒹(𝒜𝓍𝑚(𝑘), 𝒮𝓍𝑚(𝑘))𝒹
2(ℬ𝓍𝑛(𝑘), 𝒯𝓍𝑛(𝑘)),

𝒹(𝒜𝓍𝑚(𝑘), 𝒮𝑥𝑚(𝑘))𝒹(𝒜𝓍𝑚(𝑘), 𝒯𝓍𝑛(𝑘))𝒹(ℬ𝓍2𝑛+1, 𝒮𝓍𝑚(𝑘)),

𝒹(𝒜𝓍𝑚(𝑘), 𝒯𝓍𝑛(𝑘))𝒹(ℬ𝓍𝑛(𝑘), 𝒮𝓍𝑚(𝑘))𝒹(ℬ𝓍𝑛(𝑘), 𝒯𝓍𝑛(𝑘)) }
 
 

 
 

 

                                                                 −∅{𝓂(𝒜𝓍𝑚(𝑘), ℬ𝓍𝑛(𝑘))},    

where 

𝓂(𝒜𝓍𝑚(𝑘), ℬ𝓍𝑛(𝑘)) = 𝑚𝑎𝑥

{
  
 

  
 

𝒹2(𝒜𝓍𝑚(𝑘), ℬ𝓍𝑛(𝑘)),

𝒹(𝒜𝓍𝑚(𝑘), 𝒮𝓍2𝑛)𝒹(ℬ𝓍𝑛(𝑘), 𝒯𝓍𝑛(𝑘)),

𝒹(𝒜𝓍𝑚(𝑘), 𝒯𝓍𝑛(𝑘))𝒹(ℬ𝓍𝑛(𝑘), 𝒮𝓍𝑚(𝑘)),

1

2
[
𝒹(𝒜𝓍𝑚(𝑘), 𝒮𝓍𝑚(𝑘))𝒹(𝒜𝓍𝑚(𝑘), 𝒯𝓍𝑛(𝑘))

+𝒹(ℬ𝓍𝑛(𝑘), 𝒮𝓍𝑚(𝑘))𝒹(ℬ𝓍𝑛(𝑘), 𝒯𝓍𝑛(𝑘))
]
}
  
 

  
 

 

Using (2.2), we obtain 

𝒹3(𝓎𝑚(𝑘), 𝓎𝑛(𝑘))  ≤  𝜓 

{
 
 

 
 

𝒹2(𝓎𝑚(𝑘)−1, 𝓎𝑚(𝑘))𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑛(𝑘)),

𝒹(𝓎𝑚(𝑘)−1, 𝓎𝑚(𝑘))𝒹
2(𝓎𝑛(𝑘)−1, 𝓎𝑛(𝑘))

𝒹(𝓎𝑚(𝑘)−1, 𝓎𝑚(𝑘))𝒹(𝓎𝑚(𝑘)−1, 𝓎𝑛(𝑘))𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑚(𝑘)),

𝒹(𝓎𝑚(𝑘)−1, 𝓎𝑛(𝑘))𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑚(𝑘))𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑛(𝑘)) }
 
 

 
 

 

                                                     −∅ {𝓂(𝒜𝓍𝑚(𝑘), ℬ𝓍𝑛(𝑘))}  
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where, 

𝓂(𝒜𝓍𝑚(𝑘), ℬ𝓍𝑛(𝑘)) = 𝑚𝑎𝑥

{
  
 

  
 

𝒹2(𝓎𝑚(𝑘)−1, 𝓎𝑛(𝑘)−1),

𝒹(𝓎𝑚(𝑘)−1, 𝓎𝑚(𝑘))𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑛(𝑘)),

𝒹(𝓎𝑚(𝑘)−1, 𝓎𝑛(𝑘))𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑚(𝑘)),

1

2
[
𝒹(𝓎𝑚(𝑘)−1, 𝓎𝑚(𝑘))𝒹(𝓎𝑚(𝑘)−1, 𝓎𝑛(𝑘))

+𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑚(𝑘))𝒹(𝓎𝑛(𝑘)−1, 𝓎𝑛(𝑘))
]
}
  
 

  
 

 

Letting  𝑘 → ∞, and using property of 𝜓 and ∅, we have  

𝜖3 ≤ 0 − ∅(𝜖2) 

                                                                    = −∅(𝜖2), which is a contradiction.              

Hence the sequence {𝓎𝑛} is a Cauchy sequence in 𝔙, but (𝔙, 𝒹) is a complete metric space, 

therefore,  {𝓎𝑛} converges to a point 𝓏 in 𝔙 as 𝑛 → ∞. Consequently, the subsequences 

{𝒮𝓍2𝑛}, {𝒜𝓍2𝑛}, {𝒯𝓍2𝑛+1} and {ℬ𝓍2𝑛+1}  also converges to the same point 𝓏.  

Now suppose that 𝒜  is continuous. Then {𝒜𝒜𝑥2𝑛}and {𝒜𝒮𝑥2𝑛} converges to 𝒜𝓏  as 𝑛 → ∞. 

Since the mappings 𝒜  and 𝒮  are compatible in 𝔙 , it follows from the Proposition 2.2 that 

{𝒮𝒜𝑥2𝑛} converges to 𝒜𝓏 as 𝑛 → ∞.   

Now we claim that 𝓏 = 𝒜𝓏. For this put 𝓊 = 𝒜𝑥2𝑛 and 𝓋 = 𝑥2𝑛+1 in (C2), we get 

𝒹3(𝒮𝒜𝑥2𝑛, 𝒯𝓍2𝑛+1)

≤ 𝜓

{
 

 
𝒹2(𝒜𝒜𝑥2𝑛 , 𝒮𝒜𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝒜𝑥2𝑛 , 𝒮𝒜𝑥2𝑛 )𝒹
2(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝒜𝑥2𝑛 , 𝒮𝒜𝑥2𝑛 )𝒹(𝒜𝒜𝑥2𝑛 , 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝒜𝑥2𝑛 ),

𝒹(𝒜𝒜𝑥2𝑛 , 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝒜𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1) }
 

 

   

− ∅ {𝓂(𝒜𝒜𝑥2𝑛 , ℬ𝓍2𝑛+1)},   

where    𝓂(𝒜𝒜𝑥2𝑛 , ℬ𝓍2𝑛+1) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝒜𝑥2𝑛 , ℬ𝓍2𝑛+1),

𝒹(𝒜𝒜𝑥2𝑛 , 𝒮𝒜𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝒜𝑥2𝑛 , 𝑇𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝒜𝑥2𝑛 ),

1

2
[
𝒹(𝒜𝒜𝑥2𝑛 , 𝒮𝒜𝑥2𝑛 )𝒹(𝒜𝒜𝑥2𝑛 , 𝒯𝓍2𝑛+1)

+𝒹(ℬ𝓍2𝑛+1, 𝒮𝒜𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)
]
}
 
 

 
 

 

or                 𝒹3(𝒜𝓏, 𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓏,𝒜𝓏)𝒹(𝓏, 𝓏),

𝒹(𝒜𝓏,𝒜𝓏)𝒹2(𝓏, 𝓏),
𝒹(𝒜𝓏,𝒜𝓏)𝒹(𝒜𝓏, 𝓏)𝒹(𝓏,𝒜𝓏),
𝒹(𝒜𝓏, 𝓏)𝒹(𝓏,𝒜𝓏)𝒹(𝓏, 𝓏) }

 

 
− ∅ {𝓂(𝒜𝓏, 𝓏)},       
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                   where     𝓂(𝒜𝓏, 𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏, 𝓏),

𝒹(𝒜𝓏, 𝓏)𝒹(𝓏, 𝓏),
𝒹(𝒜𝓏, 𝓏)𝒹(𝓏,𝒜𝓏),

1

2
[
𝒹(𝒜𝓏,𝒜𝓏)𝒹(𝒜𝓏, 𝓏)

+𝒹(𝓏,𝒜𝓏)𝒹(𝓏, 𝓏)
]
}
 
 

 
 

=𝒹2(𝒜𝓏, 𝓏)  

Therefore, we have 

𝒹3(𝒜𝓏, 𝓏)  ≤  𝜓{0,0,0,0} − ∅(𝒹2(𝒜𝓏, 𝓏)), using property of 𝜓 and ∅, we have  𝒜𝓏 = 𝓏. 

Now we claim that 𝓏 = 𝒮𝓏. For this put 𝓊 = 𝓏 and 𝓋 = 𝑥2𝑛+1 in (C2), we get 

𝒹3(𝒮𝓏 , 𝒯𝓍2𝑛+1)

≤ 𝜓

{
 

 
𝒹2(𝒜𝓏 , 𝒮𝓏 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏 , 𝒮𝓏 )𝒹2(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏 , 𝒮𝓏 )𝒹(𝒜𝓏 , 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓏 ),

𝒹(𝒜𝓏 , 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓏 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)}
 

 

   

− ∅ {𝓂(𝒜𝓏 , ℬ𝓍2𝑛+1)},   

where    𝓂(𝒜𝓏  , ℬ𝓍2𝑛+1) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏  , ℬ𝓍2𝑛+1),

𝒹(𝒜𝓏  , 𝒮𝒜𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏  , 𝑇𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓏  ),

1

2
[

𝒹(𝒜𝓏  , 𝒮𝓏  )𝒹(𝒜𝓏  , 𝒯𝓍2𝑛+1)

+𝒹(ℬ𝓍2𝑛+1, 𝒮𝓏  )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)
]
}
 
 

 
 

 

           or    𝒹3(𝒮𝓏, 𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓏, 𝒮𝓏)𝒹(𝓏, 𝓏),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹2(𝓏, 𝓏),
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝓏)𝒹(𝓏, 𝒮𝓏),
𝒹(𝒜𝓏, 𝓏)𝒹(𝓏, 𝒮𝓏)𝒹(𝓏, 𝓏) }

 

 
− ∅ {𝓂(𝒜𝓏, 𝓏)},   

where       𝓂(𝒜𝓏, 𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏, 𝓏),
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝓏, 𝓏),
𝒹(𝒜𝓏, 𝓏)𝒹(𝓏, 𝒮𝓏),

1

2
[
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝓏)

+𝒹(𝓏, 𝒮𝓏)𝒹(𝓏, 𝓏)
]
}
 
 

 
 

= 0. 

Therefore, we have 

𝒹3(𝒮𝓏, 𝓏) ≤  𝜓{0,0,0,0} − ∅(0),using property of 𝜓 and ∅, we have 𝒹3(𝒮𝓏, 𝓏) = 0. 

This implies that 𝒮𝓏 = 𝓏. Since 𝒮(𝔙) ⊂ ℬ(𝔙) and hence there exists a point 𝓅 ∈ 𝔙 such that 

𝓏 = 𝒮𝓏 = ℬ𝓅.        

We claim that 𝓏 = 𝒯𝓊. To prove this we put 𝓊 = 𝓏 and 𝓋 = 𝓅 in (C2), we get 
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    𝒹3(𝒮𝓏, 𝒯𝓅) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓅, 𝒯𝓅),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹2(ℬ𝓅, 𝒯𝓅),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓅)𝒹(ℬ𝓅, 𝒮𝓏),

𝒹(𝒜𝓏, 𝒯𝓅)𝒹(ℬ𝓅, 𝒮𝓏)𝒹(ℬ𝓅, 𝒯𝓅)}
 

 

− ∅ {𝓂(𝒜𝓏,ℬ𝓅)},   

where      𝓂(𝒜𝓏, ℬ𝓅) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏, ℬ𝓅),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓅, 𝒯𝓅),

𝒹(𝒜𝓏, 𝒯𝓅)𝒹(ℬ𝓅, 𝒮𝓏),

1

2
[
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓅)

+𝒹(ℬ𝓅, 𝒮𝓏)𝒹(ℬ𝓅, 𝒯𝓅)
]
}
 
 

 
 

= 0,                                                                                                 

i.e., 𝓂(𝒜𝓏,ℬ𝓅) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝓏, 𝓏),

𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓅),

𝒹(𝓏, 𝒯𝓅)𝒹(𝓏, 𝓏),

1

2
[
𝒹(𝓏, 𝓏)𝒹(𝒜𝓏, 𝒯𝓅)

+𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓅)
]
}
 
 

 
 

= 0 

On simplification, and using property of 𝜓 and ∅, we have 

              𝒹3(𝓏, 𝒯𝓅) ≤ 𝜓

{
 

 
𝒹2(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓅),

𝒹(𝓏, 𝓏)𝒹2(𝓏, 𝒯𝓅),

𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓅)𝒹(𝓏, 𝓏),

𝒹(𝓏, 𝒯𝓅)𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓅)}
 

 

− ∅(0).          

This implies that  𝓏 = 𝒯𝓅. Since (ℬ, 𝒯) is compatible in 𝔙 and ℬ𝓅 = 𝒯𝓅 = 𝓏, by Proposition 

2.1, we have ℬ𝒯𝓅 = 𝒯ℬ𝓅 and hence ℬ𝓏 = ℬ𝒯𝓅 = 𝒯ℬ𝓅 = 𝒯𝓏. Also, we have 

               𝒹3(𝒮𝓏, 𝒯𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹2(ℬ𝓏, 𝒯𝓏),
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓏),
𝒹(𝒜𝓏, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓏)𝒹(ℬ𝓏, 𝒯𝓏)}

 

 
− ∅(𝓂(𝒜𝓏,ℬ𝓏)),                                                                                                   

where       𝓂(𝒜𝓏,ℬ𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏, ℬ𝓏),
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓏, 𝒯𝓏),
𝒹(𝒜𝓏, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓏),

1

2
[
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓏)

+𝒹(ℬ𝓏, 𝒮𝓏)𝒹(ℬ𝓏, 𝒯𝓏)
]
}
 
 

 
 

= 𝒹2(𝓏, ℬ𝓏). 

Therefore, we obtain 

𝑑3(𝓏, ℬ𝓏) ≤  𝜓{0,0,0,0} − ∅(𝑑2(𝓏, ℬ𝓏))., using property of 𝜓 and ∅, we have 

i.e.,    𝑑2(𝓏, ℬ𝓏) ≤ 0.   
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This implies that 𝓏 = ℬ𝓏. Hence 𝓏 = ℬ𝓏 = 𝒯𝓏 = 𝒜𝓏 = 𝒮𝓏. Therefore, 𝓏 is a common fixed 

point of 𝒮, 𝒯,𝒜 and ℬ. 

Similarly, one can also complete the proof when ℬ is continuous. 

Next, suppose that 𝒮 is continuous. 

Then {𝒮𝒮𝓍2𝑛}  and {𝒮𝒜𝓍2𝑛}  converges to 𝒮𝓏  as 𝑛 → ∞.  Since the mappings 𝒜  and 𝒮  are 

compatible on 𝔙, it follows from the proposition 2.2 that {𝒜𝒮𝓍2𝑛} converges to 𝒮𝓏 as 𝑛 → ∞.   

Now we claim that 𝓏 = 𝒮𝓏. For this put 𝓊 = 𝒮𝓍2𝑛 and 𝓋 = 𝓍2𝑛+1 in (C2), we get 

𝒹3(𝒮𝒮𝑥2𝑛, 𝒯𝓍2𝑛+1)

≤ 𝜓

{
 

 
𝒹2(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹
2(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹(𝒜𝒮𝑥2𝑛 , 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝒮𝑥2𝑛 ),

𝒹(𝒜𝒮𝑥2𝑛 , 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝒮𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)}
 

 

   

− ∅ {𝓂(𝒜𝒮𝑥2𝑛 , ℬ𝓍2𝑛+1)},   

where    𝓂(𝒜𝒮𝑥2𝑛 , ℬ𝓍2𝑛+1) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝒮𝑥2𝑛 , ℬ𝓍2𝑛+1),

𝒹(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝒮𝑥2𝑛 , 𝑇𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝒮𝑥2𝑛 ),

1

2
[
𝒹(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹(𝒜𝒮𝑥2𝑛 , 𝒯𝓍2𝑛+1)

+𝒹(ℬ𝓍2𝑛+1, 𝒮𝒮𝑥2𝑛 )𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)
]
}
 
 

 
 

    

Now proceeding limit as 𝑛 → ∞ and using the property of 𝜓 and  ∅, we have 

𝒹3(𝒮𝓏, 𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒮𝓏 , 𝒮𝓏 )𝒹(𝓏, 𝓏),

𝒹(𝒮𝓏 , 𝒮𝓏 )𝒹2(𝓏, 𝓏),
𝒹(𝒮𝓏 , 𝒮𝓏 )𝒹(𝒮𝓏 , 𝓏)𝒹(𝓏, 𝒮𝓏 ),
𝒹(𝒮𝓏 , 𝓏)𝒹(𝓏, 𝒮𝓏 )𝒹(𝓏, 𝓏) }

 

 
   − ∅ {𝓂(𝒮𝓏 , 𝓏)},   

where    𝓂(𝒮𝓏 , 𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒮𝓏 , 𝓏),
𝒹(𝒮𝓏 , 𝒮𝓏 )𝒹(𝓏, 𝓏),
𝒹(𝒮𝓏 , 𝓏)𝒹(𝓏, 𝒮𝓏 ),

1

2
[
𝒹(𝒮𝓏 , 𝒮𝓏 )𝒹(𝒮𝓏 , 𝓏)

+𝒹(𝓏, 𝒮𝓏 )𝒹(𝓏, 𝓏)
]
}
 
 

 
 

= 𝒹2(𝒮𝓏 , 𝓏). 

Therefore, we have 𝒹3(𝒮𝓏, 𝓏) ≤  𝜓{0,0,0,0} − ∅(𝒹2(𝒮𝓏 , 𝓏)),using property of 𝜓  and ∅,  we 

have 𝒹3(𝒮𝓏, 𝓏) = 0. This implies that 𝒮𝓏 = 𝓏 . Since 𝒮(𝔙) ⊂ ℬ(𝔙) and hence there exists a 

point 𝓆 ∈ 𝔙 such that 𝓏 = 𝒮𝓏 = ℬ𝓆.  
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We claim that 𝓏 = 𝒯𝓆. To prove this, we put 𝓊 = 𝒮𝓍2𝑛 and 𝓋 = 𝓆 in (C2) we get 

𝒹3(𝒮𝒮𝑥2𝑛, 𝒯𝓆)

≤ 𝜓

{
 

 
𝒹2(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹(ℬ𝓆, 𝒯𝓆),

𝒹(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹
2(ℬ𝓆, 𝒯𝓆),

𝒹(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹(𝒜𝒮𝑥2𝑛 , 𝒯𝓆)𝒹(ℬ𝓍2𝑛+1, 𝒮𝒮𝑥2𝑛 ),

𝒹(𝒜𝒮𝑥2𝑛 , 𝒯𝓆)𝒹(ℬ𝓍2𝑛+1, 𝒮𝒮𝑥2𝑛 )𝒹(ℬ𝓆, 𝒯𝓆) }
 

 

   

− ∅ {𝓂(𝒜𝒮𝑥2𝑛 , ℬ𝓆)},   

where    𝓂(𝒜𝒮𝑥2𝑛 , ℬ𝓆) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝒮𝑥2𝑛 , ℬ𝓆),

𝒹(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹(ℬ𝓆, 𝒯𝓆),

𝒹(𝒜𝒮𝑥2𝑛 , 𝑇𝓆)𝒹(ℬ𝓆, 𝒮𝒮𝑥2𝑛 ),

1

2
[
𝒹(𝒜𝒮𝑥2𝑛 , 𝒮𝒮𝑥2𝑛 )𝒹(𝒜𝒮𝑥2𝑛 , 𝒯𝓆)

+𝒹(ℬ𝓆, 𝒮𝒮𝑥2𝑛 )𝒹(ℬ𝓆, 𝒯𝓆)
]
}
 
 

 
 

 

       i.e.,      𝓂(𝓏,ℬ𝓆) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝓏, 𝓏),
𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓆),

𝒹(𝓏, 𝒯𝓆)𝒹(𝓏, 𝓏),

1

2
[
𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓆)

+𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓆)
]
}
 
 

 
 

= 0   

Therefore, we get 

              𝒹3(𝓏, 𝒯𝓆) ≤ 𝜓

{
 

 
𝒹2(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓆),

𝒹(𝓏, 𝓏)𝒹2(𝓏, 𝒯𝓆),

𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓆)𝒹(𝓏, 𝓏),

𝒹(𝓏, 𝒯𝓆)𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒯𝓆)}
 

 

− ∅(0).          

Using the property of 𝜓 and ∅, we have 𝓏 = 𝒯𝓆. Since (ℬ, 𝒯) is a compatible pair of mappings, 

so ℬ𝓆 = 𝒯𝓆 = 𝓏  and by using Proposition 2.1 we have ℬ𝒯𝓆 = 𝒯ℬ𝓆 and hence ℬ𝓏 = ℬ𝒯𝓆 =

𝒯ℬ𝓆 = 𝒯𝓏. On putting 𝓊 = 𝓍2𝑛 and 𝓋 = 𝓏 in (C2), we have 

𝒹3(𝒮𝓍2𝑛, 𝒯𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹
2(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(𝒜𝓍2𝑛, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓍2𝑛),

𝒹(𝒜𝓍2𝑛, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏) }
 

 

− ∅ {𝓂(𝒜𝓍2𝑛, ℬ𝓏)},   

where     𝓂(𝒜𝓍2𝑛, ℬ𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝑥2𝑛, ℬ𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝑥2𝑛, 𝑇𝓏)𝒹(ℬ𝓏, 𝒮𝑥2𝑛),

1

2
[
𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(𝒜𝑥2𝑛, 𝒯𝓏)

+𝒹(ℬ𝓏, 𝒮𝑥2𝑛)𝒹(ℬ𝓏, 𝒯𝓏)
]
}
 
 

 
 

= 𝒹2(𝓏, 𝒯𝓏) 
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Proceeding limit as 𝑛 → ∞,we get  

 𝒹3(𝓏, 𝒯𝓏) ≤  𝜓{0,0,0,0} − ∅{𝒹2(𝓏, 𝒯𝓏)}.         

Using the property of 𝜓 and ∅, we have  𝓏 = 𝒯𝓏. Since 𝒯(𝔙) ⊂ 𝒜(𝔙), therefore there exists a 

point 𝓌 ∈ 𝔙 such that 𝓏 = 𝒯𝓏 = 𝒜𝓌.        

We claim that 𝓏 = 𝒮𝓌. On putting 𝓊 = 𝓌 and 𝓋 = 𝓏 in (C2) we get 

𝒹3(𝒮𝓌,𝒯𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓌, 𝒮𝓌)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓌, 𝒮𝓌)𝒹2(ℬ𝓏, 𝒯𝓏),
𝒹(𝒜𝓌, 𝒮𝓌)𝒹(𝒜𝓌,𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓌),
𝒹(𝒜𝓌,𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓌)𝒹(ℬ𝓏, 𝒯𝓏) }

 

 
− ∅ {𝓂(𝒜𝓌,ℬ𝓏)},   

where       𝓂(𝒜𝓌,ℬ𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓌,ℬ𝓏),
𝒹(𝒜𝓌, 𝒮𝓌)𝒹(ℬ𝓏, 𝒯𝓏),
𝒹(𝒜𝓌,𝑇𝓏)𝒹(ℬ𝓏, 𝒮𝓌),

1

2
[
𝒹(𝒜𝓌, 𝒮𝓌)𝒹(𝒜𝓌,𝒯𝓏)

+𝒹(ℬ𝓏, 𝒮𝓌)𝒹(ℬ𝓏, 𝒯𝓏)
]
}
 
 

 
 

= 0.             

       i.e.,      𝓂(𝒜𝓌,ℬ𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝓏, 𝓏),
𝒹(𝓏, 𝒮𝓌)𝒹(𝑇𝓏, 𝑇𝓏),
𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒮𝓌),

1

2
[
𝒹(𝓏, 𝒮𝓌)𝒹(𝓏, 𝓏)

+𝒹(𝓏, 𝒮𝓌)𝒹(𝑇𝓏, 𝑇𝓏)
]
}
 
 

 
 

= 0       

Therefore,  𝒹3(𝒮𝓌, 𝓏) ≤ 𝜓

{
 

 
𝒹2(𝓏, 𝒮𝓌)𝒹(𝓏, 𝓏),

𝒹(𝓏, 𝒮𝓌)𝒹2(𝓏, 𝓏),
𝒹(𝓏, 𝒮𝓌)𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒮𝓌),
𝒹(𝓏, 𝓏)𝒹(𝓏, 𝒮𝓌)𝒹(𝓏, 𝓏) }

 

 
− ∅ {0},   

This implies that 𝒮𝓌 = 𝓏. Since pair (𝒮,𝒜) is compatible on  𝔙, so, 𝒮𝓌 = 𝒜𝓌 = 𝓏 and by 

Proposition 2.1, we have  𝒜𝒮𝓌 = 𝒮𝒜𝓌. Thus 𝒜𝓏 = 𝒜𝒮𝓌 = 𝒮𝒜𝓌 = 𝒮𝓏.  

i.e., 𝓏 = 𝒜𝓏 = 𝒮𝓏 = ℬ𝓏 = 𝒯𝓏. Therefore,  𝓏  is a common fixed point of 𝒮, 𝒯,𝒜 and ℬ. 

Similarly, we can complete the proof when 𝒯 is continuous. 

Uniqueness:  Suppose 𝓏 ≠ 𝓌 be two common fixed points of  𝒮, 𝒯,𝒜 and ℬ. 

Put 𝓊 = 𝓏 and 𝓋 = 𝓌 in (C2), we get  

 𝒹3(𝒮𝓏, 𝒯𝓌) ≤  𝜓{0,0,0,0} − ∅(𝓂(𝒜𝓏, ℬ𝓌)) 

 𝒹3(𝒮𝓏, 𝒯𝓌) ≤  𝜓{0,0,00} − ∅(𝒹2(𝒮𝓏, 𝒯𝓌)) 
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On simplification, using the property of 𝜓 and ∅, we have we have 𝒹2(𝓏,𝓌) = 0 

𝑖. 𝑒., 𝓏 = 𝓌.   

This completes the proof. 

If we put 𝜓(𝓉) = 0 for all 𝓉  in Theorem 2.1, we have the following result:  

Corollary 2.1 Let 𝒜,ℬ, 𝒮 and 𝒯 be four mappings of a complete metric space (𝔙, 𝒹)  into itself 

satisfying (C1), (C2) and the following condition:  

   𝒹2(𝒮𝓍, 𝒯𝓎)  ≤ 0 − ∅(𝓂(𝒜𝓍, ℬ𝓎)), for all 𝓍,𝓎 ∈ 𝔙                                                                                            

where 𝓂(𝒜𝓍,ℬ𝓎) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓍, ℬ𝓎),

𝒹(𝒜𝓍, 𝒮𝓍)𝒹(ℬ𝓎,𝒯𝓎),

𝒹(𝒜𝓍, 𝒯𝓎)𝒹(ℬ𝓎, 𝒮𝓍),

1

2
[
𝒹(𝒜𝓍, 𝒮𝓍)𝒹(𝒜𝓍, 𝒯𝓎)

+𝒹(ℬ𝓎, 𝒮𝓍)𝒹(ℬ𝓎, 𝒯𝓎)
]
}
 
 

 
 

 

∅: [0,∞) → [0,∞) is a continuous function with ∅(𝓉) = 0 ⇔ 𝓉 = 0 and ∅(𝓉) > 0 for each 𝓉 >

0. Assume that the pairs (𝒜, 𝒮) and (ℬ, 𝒯) are compatible. Then 𝒜,ℬ, 𝒮 and 𝒯  has a unique 

fixed point in 𝔙.  

 

3. VARIANTS OF COMPATIBLE MAPPINGS AND FIXED POINTS 

Fixed point theorems are statements containing sufficient conditions that ensure the 

existence of a fixed point. Therefore, one of the central concerns in fixed point theory is to find a 

minimal set of sufficient conditions which guarantee a fixed point or a common fixed point as 

the case may be. It was a landmark in the fixed point theory literature when the notion of 

commutativity mappings was used by Jungck [6] to obtain a common fixed point theorem for a 

pair of mappings by using a constructive procedure of sequence of iterates. The essence of 

Jungck’s theorem has been used by several workers to obtain interesting common fixed point 

theorems for both commuting and non commuting pairs of mappings satisfying contractive type 

conditions. The constructive technique of Jungck’s theorem has been further improved and 

extended by various researchers to establish common fixed point theorems for three mappings, 
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four mappings and sequence of mappings. Common fixed point theorems for contractive type 

mappings necessarily require a commutativity condition, a condition on the ranges of the 

mappings, continuity of one or more mappings besides a contractive condition.  

In 1993, Jungck et al. [10] introduced the notion of compatible mappings of type(A) as 

follows: 

Definition 3.1 [10] Two self mappings 𝒻 and ℊ of a metric space (𝔙,𝒹) are called compatible of 

type(A) if   𝑙𝑖𝑚𝑛𝒹(𝒻𝒻𝓍𝑛, ℊ𝒻𝓍𝑛) = 0 and 𝑙𝑖𝑚𝑛𝒹(ℊℊ𝓍𝑛, 𝒻ℊ𝓍𝑛) = 0,  

whenever{𝓍𝑛} is a sequence in 𝔙 such that  𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉, for some 𝓉 in 𝔙.  

 In 1995, Pathak et al. [13] introduced the notion of compatible mappings of type(P) as 

follows: 

Definition 3.2[13]Two self mappings 𝒻 and ℊ of a metric space (𝔙,𝒹) are called compatible of 

type(P) if  𝑙𝑖𝑚𝑛𝒹(𝒻𝒻𝓍𝑛, ℊℊ𝓍𝑛) = 0,whenever{𝓍𝑛} is a sequence in 𝔙 such that  𝑙𝑖𝑚𝑛𝒻𝓍𝑛 =

𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉, for some 𝓉 in 𝔙. 

 In 1998, Pant [17] defined the notion of reciprocally continuous mappings. In fact, it is 

the generalization of continuous mappings. 

Dentition 3.3[17] Two self mappings 𝒻 and ℊ of a metric space (𝔙, 𝒹)are called reciprocally 

continuous if 𝑙𝑖𝑚𝑛𝒻ℊ𝓍𝑛  =  𝒻𝓉 and 𝑙𝑖𝑚𝑛ℊ𝒻𝓍𝑛  =  ℊ𝓉, whenever {𝓍𝑛} is a sequence in 𝔙 such 

that  𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉, for some 𝓉 in 𝔙. 

If 𝑓 and 𝑔 are both continuous, then maps are reciprocally continuous, but the converse need not 

be true. 

 In 2001, Sahu et al. [22] introduced the notion of intimate mappings in metric spaces. In 

fact, it is the generalization of compatible mappings of type (A).  

Definition 3.4[22] Let 𝒻  and ℊ  are two mappings of a metric space (𝔙, 𝒹) into itself. Then 

𝒻 and ℊ are said to be: 

(1) ℊ-intimate mappings if 𝛼𝒹(ℊ𝒻𝓍𝑛, ℊ𝓍𝑛) ≤ 𝛼𝒹(𝒻𝒻𝓍𝑛, 𝒻𝓍𝑛), where {𝓍𝑛} is a sequence in 𝔙 

such that 𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉, for some 𝓉 in 𝔙 and 𝛼 = 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑜𝑟 𝑙𝑖𝑚 𝑖𝑛𝑓. 
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(2) 𝒻-intimate mappings if𝛼𝒹(𝒻ℊ𝓍𝑛, 𝒻𝓍𝑛) ≤ 𝛼𝒹(ℊℊ𝓍𝑛, ℊ𝓍𝑛), where {𝓍𝑛} is a sequence  

in𝔙 such that 𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉, for some 𝓉 in 𝔙 and 𝛼 = 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑜𝑟 𝑙𝑖𝑚 𝑖𝑛𝑓. 

 In 2004, Rohan et al. [20] introduced the concept of compatible mappings of type (R) as 

follows: 

Definition 3.5[20] Two self-mappings𝒻 and ℊ of a metric space (𝔙, 𝒹) are called compatible of 

type (R) if  𝑙𝑖𝑚𝑛𝑑(𝒻ℊ𝓍𝑛, ℊ𝒻𝓍𝑛) = 0 and 𝑙𝑖𝑚𝑛𝑑(𝒻𝒻𝓍𝑛, ℊℊ𝓍𝑛) = 0 , whenever { 𝓍𝑛 } is a 

sequence in 𝔙 such that  𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉, for some 𝓉 in 𝔙. 

 In 2007, Singh and Singh [23] introduced the concept of compatible mappings of type (E) 

by rearranging terms of compatible mappings of type (P) and compatible mappings  

Definition 3.6 [23] Two self-mappings 𝒻 and ℊ of a metric space (𝔙, 𝒹) are called compatible of 

type (E) if  𝑙𝑖𝑚𝑛𝒻𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛𝒻ℊ𝓍𝑛  =  ℊ𝓉 and 𝑙𝑖𝑚𝑛ℊℊ𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝒻𝓍𝑛  =  𝒻𝓉,whenever {𝓍𝑛} 

is a sequence in 𝔙 such that  𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉, for some 𝓉 in 𝔙. 

 In 2014, Jha et al. [11] introduced the concept of compatible mappings of type (K) by 

modification in compatible mappings of type (P) in a metric space as follows: 

Definition 3.7[11]Two self-mappings𝒻 and ℊ of a metric space (𝔙, 𝒹)are called compatible of 

type (K) if   𝑙𝑖𝑚𝑛𝑑(𝒻𝒻𝓍𝑛 , ℊ𝓉)  =  0 and 𝑙𝑖𝑚𝑛𝑑(ℊℊ𝓍𝑛, 𝒻𝓉)  =  0, 

whenever {𝓍𝑛} is a sequence in 𝔙 such that  𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉, for some 𝓉 in 𝔙. 

 We describe the relationship among compatible maps and its variants in metric spaces 

which are useful for proving our main results. 

Remark 3.1 One can note that compatible mapping of type (R) is compatible mapping as well as 

compatible mappings of type (P). 

Proposition 3.1 [23] Suppose𝒻 and ℊ be compatible mappings of type (E) of a metric space 

(𝔙, 𝒹)  into itself and one of 𝒻  and ℊ  be continuous. Suppose 𝑙𝑖𝑚𝑛𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝓍𝑛 = 𝓉,  for 

some 𝓉 in 𝔙. Then we have the following: 

(𝑎)𝒻𝓉 =  ℊ𝓉 and 𝑙𝑖𝑚𝑛𝒻𝒻𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊℊ𝓍𝑛 = 𝑙𝑖𝑚𝑛𝒻ℊ𝓍𝑛 = 𝑙𝑖𝑚𝑛ℊ𝒻𝓍𝑛.  

(𝑏)If there exists 𝓊 ∈ 𝔙 such that 𝒻𝓊 =  ℊ𝓊 =  𝓉, then 𝒻ℊ𝓊 =  ℊ𝒻𝓊. 
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Proposition 3.2 Let 𝒻 and ℊ be two mappings of a metric space (𝔙,𝒹) into itself. If 𝒻 and ℊ are 

compatible mappings of type (A), then 𝒻 and ℊ are 𝒻-intimate and ℊ-intimate. 

Remark 3.2 If a pair (𝒻, ℊ)  is 𝒻 -intimate or ℊ -intimate then it need not be necessarily 

compatible of type (A). 

Proposition 3.3 [22] Let 𝒻 and ℊ be two mappings of a metric space (𝔙, 𝒹) into itself. Assume 

that 𝒻 and ℊ are ℊ-intimate and 𝒻𝓉 =  ℊ𝓉 =  𝓆 ∈ 𝔙. Then 𝒹(ℊ𝓆, 𝓆)  ≤ 𝒹(𝒻𝓆, 𝓆). 

We now prove some results in metric spaces related to compatible mappings of type (K), type 

(R), type (E) and intimate mappings that satisfy generalized  𝜓 −  ∅ −weak contraction condition 

that involves cubic and quadratic terms of distance function. 

Theorem 3.1 Let 𝒮, 𝒯,𝒜  and ℬ  are four self mappings of a complete metric space (𝔙, 𝒹)   

satisfying (C1) and (C2) and the following conditions: 

(3.1) the pairs (𝒜,𝒮) and (ℬ, 𝒯) are reciprocally continuous, 

(3.2) the pairs (𝒜,𝒮)and (ℬ, 𝒯)  are compatible of type (𝐾). 

Then 𝓏 = 𝒜𝓏 = 𝒮𝓏 = ℬ𝓏 = 𝒯𝓏, and  𝓏 is unique in 𝔙. 

Proof. From the Theorem 2.1, we conclude the sequence {𝓎𝑛} is a Cauchy sequence in 𝔙, but 

(𝔙, 𝒹)  is a complete metric space, therefore,  {𝑦𝑛} converges to a point 𝓏 in 𝔙 as 𝑛 →

∞. Consequently, the subsequences {𝒮𝓍2𝑛}, {𝒜𝓍2𝑛}, {𝒯𝓍2𝑛+1} and {ℬ𝓍2𝑛+1}  also converges to 

the same point 𝓏. Now Since the pairs (𝒜,𝒮) and (ℬ, 𝒯)  are compatible of type(𝐾), we have 

𝒜𝒜𝑥2𝑛 → 𝒮𝓏, 𝒮𝒮𝑥2𝑛 → 𝒜𝓏 and ℬℬ𝑥2𝑛 → 𝒯𝓏, 𝒯𝒯𝑥2𝑛 → ℬ𝓏 as 𝑛 → ∞. 

Now we claim that ℬ𝓏 = 𝒜𝓏. For this put 𝓊 = 𝒮𝓍2𝑛 and 𝓋 = 𝒯𝓍2𝑛+1 in (C2) we get 

𝒹3(𝒮𝒮𝓍2𝑛, 𝒯𝒯𝓍2𝑛+1)

≤ 𝜓

{
 

 
𝒹2(𝒜𝒮𝓍2𝑛, 𝒮𝒮𝓍2𝑛)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1),

𝒹(𝒜𝒮𝓍2𝑛, 𝒮𝒮𝓍2𝑛)𝒹
2(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1),

𝒹(𝒜𝒮𝓍2𝑛, 𝒮𝒮𝓍2𝑛)𝒹(𝒜𝒮𝓍2𝑛, 𝒯𝒯𝓍2𝑛+1)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒮𝒮𝓍2𝑛),

𝒹(𝒜𝒮𝓍2𝑛, 𝒯𝒯𝓍2𝑛+1)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒮𝒮𝓍2𝑛)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1)}
 

 

− ∅ {𝓂(𝒜𝒮𝓍2𝑛, ℬ𝒯𝓍2𝑛+1)},   
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Where 𝓂(𝒜𝒮𝓍2𝑛, ℬ𝒯𝓍2𝑛+1) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝒮𝓍2𝑛, ℬ𝒯𝓍2𝑛+1),

𝒹(𝒜𝒮𝓍2𝑛, 𝒮𝒮𝓍2𝑛)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1),

𝒹(𝒜𝒮𝓍2𝑛, 𝑇𝒯𝓍2𝑛+1)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒮𝒮𝓍2𝑛),

1

2
[

𝒹(𝒜𝒮𝓍2𝑛, 𝒮𝒮𝓍2𝑛)𝒹(𝒜𝒮𝓍2𝑛, 𝒯𝒯𝓍2𝑛+1)

+𝒹(ℬ𝒯𝓍2𝑛+1, 𝒮𝒮𝓍2𝑛)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1)
]
}
 
 

 
 

 

Letting 𝑛 → ∞ and using reciprocal continuity of the pairs (𝒜,𝒮)and (ℬ, 𝒯), we have 

𝒹3(ℬ𝓏,𝒜𝓏. )  ≤  𝜓{0,0,0,0} − ∅(𝒹2(ℬ𝓏,𝒜𝓏), using property of 𝜓  and ∅,  we have 

𝒹3(ℬ𝓏,𝒜𝓏) = 0.This implies that ℬ𝓏 = 𝒜𝓏.  

Next, we claim that 𝒮𝓏 = ℬ𝓏. On putting 𝓊 = 𝓏 and 𝓋 = 𝒯𝓍2𝑛+1 in (C2) we get 

𝒹3(𝒮𝓏, 𝒯𝒯𝓍2𝑛+1)

≤ 𝜓

{
 

 
𝒹2(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹2(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝒯𝓍2𝑛+1)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒮𝓏),

𝒹(𝒜𝓏, 𝒯𝒯𝓍2𝑛+1)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒮𝓏)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1)}
 

 

− ∅ {𝓂(𝒜𝓏,ℬ𝒯𝓍2𝑛+1)},   

Where 𝓂(𝒜𝓏,ℬ𝒯𝓍2𝑛+1) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏, ℬ𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏, 𝑇𝒯𝓍2𝑛+1)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒮𝓏),

1

2
[

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝒯𝓍2𝑛+1)

+𝒹(ℬ𝒯𝓍2𝑛+1, 𝒮𝓏)𝒹(ℬ𝒯𝓍2𝑛+1, 𝒯𝒯𝓍2𝑛+1)
]
}
 
 

 
 

 

Letting 𝑛 → ∞ and using reciprocal continuity of the pairs (𝒜,𝒮)and (ℬ, 𝒯), we have 

𝒹3(𝒮𝓏, ℬ𝓏)  ≤  𝜓{0,0,0,0} − ∅(0), 

using property of 𝜓 and ∅, we have 𝒹3(𝒮𝓏, ℬ𝓏) = 0.This implies that 𝒮𝓏 = ℬ𝓏.  

Now we claim that  𝒮𝓏 = 𝒯𝓏. On putting 𝓊 = 𝓏 and 𝓋 = 𝓏 in (C2) we get 

𝒹3(𝒮𝓏, 𝒯𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹2(ℬ𝓏, 𝒯𝓏),
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓏),
𝒹(𝒜𝓏, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓏)𝒹(ℬ𝓏, 𝒯𝓏)}

 

 
− ∅ {𝓂(𝒜𝓏, ℬ𝓏)},   

where 𝓂(𝒜𝓏,ℬ𝓏) = 𝑚𝑎𝑥

{
 

 
𝒹2(𝒜𝓏, ℬ𝓏), 𝒹(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓏, 𝑇𝓏)𝒹(ℬ𝓏, 𝒮𝓏),

1

2
[
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓏)

+𝒹(ℬ𝓏, 𝒮𝓏)𝒹(ℬ𝓏, 𝒯𝓏)
]

}
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Proceeding limit as 𝑛 → ∞,we get 

𝒹3(𝒮𝓏, 𝒯𝓏)    ≤  𝜓 {0,0,0,0} − ∅(0). 

Thus  𝒹3(𝒮𝓏, 𝒯𝓏) = 0, implies that 𝒮𝓏 = 𝒯𝓏. 

Now we claim that 𝓏 = 𝒯𝓏. On putting 𝓊 = 𝓍2𝑛 and 𝓋 = 𝓏 in (C2), we have 

𝒹3(𝒮𝓍2𝑛, 𝒯𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹
2(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(𝒜𝓍2𝑛, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓍2𝑛),

𝒹(𝒜𝓍2𝑛, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏) }
 

 

− ∅ {𝓂(𝒜𝓍2𝑛, ℬ𝓏)},   

Where 𝓂(𝒜𝓍2𝑛, ℬ𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝑥2𝑛, ℬ𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝑥2𝑛, 𝑇𝓏)𝒹(ℬ𝓏, 𝒮𝑥2𝑛),

1

2
[
𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(𝒜𝑥2𝑛, 𝒯𝓏)

+𝒹(ℬ𝓏, 𝒮𝑥2𝑛)𝒹(ℬ𝓏, 𝒯𝓏)
]
}
 
 

 
 

= 𝒹2(𝓏, 𝒯𝓏) 

Proceeding limit as 𝑛 → ∞,weget 

𝒹3(𝓏, 𝒯𝓏) ≤  𝜓{0,0,0,0} − ∅{𝒹2(𝓏, 𝒯𝓏)}.Uniqueness follows easily 

Then 𝓏 = 𝒜𝓏 = 𝒮𝓏 = ℬ𝓏 = 𝒯𝓏, and  𝓏 is unique in 𝔙. 

First, we prove the following theorem for compatible mappings of type (𝑅). 

Theorem 3.2 Let 𝒮, 𝒯,𝒜  and ℬ  are four self mappings of a complete metric space (𝔙, 𝒹)   

satisfying (C1) and (C2) and the following conditions: 

      (3.3)  One of 𝒮, 𝒯,𝒜 and ℬ is continuous. 

 Assume that the pairs (𝒜,𝒮)and (ℬ, 𝒯) are compatible of type (𝑅). Then 𝓏 = 𝒜𝓏 = 𝒮𝓏 = ℬ𝓏 =

𝒯𝓏, and  𝓏 is unique in 𝔙. 

Proof: The proof follows from Remark 3.1 and from the compatible mappings. 

Finally, we prove the following theorem for pairs of compatible mappings of type (𝐸). 

Theorem 3.3 Let𝒮, 𝒯,𝒜  and ℬ  are four self mappings of a complete metric space (𝔙, 𝒹)   

satisfying (C1) and (C2).  Suppose that one of 𝒜 and 𝒮 is continuous, and one of ℬ and 𝒯 is 

continuous. Assume that the pairs (𝒜,𝒮) and (ℬ, 𝒯) are compatible of type(𝐸). Then 𝓏 = 𝒜𝓏 =

𝒮𝓏 = ℬ𝓏 = 𝒯𝓏, and  𝓏 is unique in 𝔙. 
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Proof. From the proof of Theorem 2.1,sequence {𝓎𝑛} is a Cauchy sequence in 𝔙, but (𝔙, 𝒹) is a 

complete metric space, therefore, {𝑦𝑛}converges to a point 𝓏in 𝔙as 𝑛 → ∞. Consequently, the 

subsequences {𝒮𝓍2𝑛}, {𝒜𝓍2𝑛}, {𝒯𝓍2𝑛+1}  and {ℬ𝓍2𝑛+1}   also converges to the same point 𝓏. 

Now Since the pairs (𝒜,𝒮)  are compatible of type(𝐸) and one of 𝒜 and 𝒮 is continuous, then 

by Proposition 2.1, 𝒜𝓏 = 𝒮𝓏. Since 𝒮(𝔙) ⊂ ℬ(𝔙), therefore, there exists a point 𝓆 ∈ 𝔙 such 

that 𝒮𝓏 = ℬ𝓆. On putting 𝓊 = 𝓏 and 𝓋 = 𝓆 in (C2) we get 

𝒹3(𝒮𝓏, 𝒯𝓆) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓆, 𝒯𝓆),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹2(ℬ𝓆, 𝒯𝓆),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓆)𝒹(ℬ𝓆, 𝒮𝓏),

𝒹(𝒜𝓏, 𝒯𝓆)𝒹(ℬ𝓆, 𝒮𝓏)𝒹(ℬ𝓆, 𝒯𝓆)}
 

 

− ∅ {𝓂(𝒜𝓏, ℬ𝓆)},   

where 𝓂(𝒜𝓏, ℬ𝓆) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏, ℬ𝓆),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓆, 𝒯𝓆),

𝒹(𝒜𝓏, 𝑇𝓆)𝒹(ℬ𝓆, 𝒮𝓏),

1

2
[
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓆)

+𝒹(ℬ𝓆, 𝒮𝓏)𝒹(ℬ𝓆, 𝒯𝓆)
]
}
 
 

 
 

= 0 

Therefore, we get  

𝒹3(𝒮𝓏, 𝒯𝓆) ≤  𝜓{0,0,0,0} − ∅(0), using property of 𝜓 and ∅, we have  

This implies that 𝒮𝓏 = 𝒯𝓆. Thus we have 𝒜𝓏 = 𝒮𝓏 = 𝒯𝓆 = ℬ𝓆. 

On putting 𝓊 = 𝓏 and 𝓋 = 𝓍2𝑛+1 in (C2) we get 

𝒹3(𝒮𝓏, 𝒯𝓍2𝑛+1)

≤ 𝜓

{
 

 
𝒹2(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹2(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓏),

𝒹(𝒜𝓏, 𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓏)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)}
 

 

− ∅ {𝓂(𝒜𝓏,ℬ𝓍2𝑛+1)},   

where 𝓂(𝒜𝓏, ℬ𝓍2𝑛+1) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏, ℬ𝓍2𝑛+1),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓏, 𝑇𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓏),

1

2
[

𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝒯𝓍2𝑛+1)

+𝒹(ℬ𝓍2𝑛+1, 𝒮𝓏)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)
]
}
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or 𝒹3(𝒮𝓏, 𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓏, 𝒮𝓏)𝒹(𝓏, 𝓏),

𝒹(𝒜𝓏, 𝒮𝓏)𝒹2(𝓏, 𝓏),
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝓏)𝒹(𝓏, 𝒮𝓏),
𝒹(𝒜𝓏, 𝓏)𝒹(𝓏, 𝒮𝓏)𝒹(𝓏, 𝓏) }

 

 
− ∅ {𝓂(𝒜𝓏, 𝓏)},   

where 𝓂(𝒜𝓏, 𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓏, 𝓏),
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝓏, 𝓏),
𝒹(𝒜𝓏, 𝓏)𝒹(𝓏, 𝒮𝓏),

1

2
[
𝒹(𝒜𝓏, 𝒮𝓏)𝒹(𝒜𝓏, 𝓏)

+𝒹(𝓏, 𝒮𝓏)𝒹(𝓏, 𝓏)
]
}
 
 

 
 

= 0. 

Therefore, we have 

𝒹3(𝒮𝓏, 𝓏)  ≤  𝜓{0,0,0,0} − ∅(0),using property of 𝜓 and ∅, we have 𝒹3(𝒮𝓏, 𝓏) = 0. 

This implies that  𝒜𝓏 = 𝒮𝓏 = 𝓏.  

Now assume that the pair(ℬ, 𝒯)are compatible of type (E) and one of ℬ and 𝒯 is continuous. 

Then we get  ℬ𝓆 = 𝒯𝓆 = 𝓏. By Proposition 2.1, we have  ℬℬ𝓆 = ℬ𝒯𝓆 = 𝒯ℬ𝓆 = 𝒯𝒯𝓆, that is 

ℬ𝓏 = 𝒯𝓏. Now we claim that 𝓏 = 𝒯𝓏. On putting 𝓊 = 𝓍2𝑛 and 𝓋 = 𝓏 in (C2), we have 

𝒹3(𝒮𝓍2𝑛, 𝒯𝓏) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹
2(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(𝒜𝓍2𝑛, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓍2𝑛),

𝒹(𝒜𝓍2𝑛, 𝒯𝓏)𝒹(ℬ𝓏, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏) }
 

 

− ∅ {𝓂(𝒜𝓍2𝑛, ℬ𝓏)},   

where 𝓂(𝒜𝓍2𝑛, ℬ𝓏) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝑥2𝑛, ℬ𝓏),

𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(ℬ𝓏, 𝒯𝓏),

𝒹(𝒜𝑥2𝑛, 𝑇𝓏)𝒹(ℬ𝓏, 𝒮𝑥2𝑛),

1

2
[
𝒹(𝒜𝓍2𝑛, 𝒮𝓍2𝑛)𝒹(𝒜𝑥2𝑛, 𝒯𝓏)

+𝒹(ℬ𝓏, 𝒮𝑥2𝑛)𝒹(ℬ𝓏, 𝒯𝓏)
]
}
 
 

 
 

= 𝒹2(𝓏, 𝒯𝓏) 

Proceeding limit as 𝑛 → ∞,weget 

𝒹3(𝓏, 𝒯𝓏) ≤  𝜓{0,0,0,0} − ∅{𝒹2(𝓏, 𝒯𝓏)}.This implies that 𝓏 = 𝒯𝓏. 

Uniqueness follows easily. Then 𝓏 = 𝒜𝓏 = 𝒮𝓏 = ℬ𝓏 = 𝒯𝓏, and  𝓏 is unique in 𝔙. 

At the last, we prove a common fixed point theorem for pairs of intimate mappings. In fact 

intimate mappings are generalizations of compatible mappings of type (A). 

Theorem 3.4 Let 𝒮, 𝒯,𝒜  and ℬ  are four self mappings of a complete metric space (𝔙, 𝒹)   

satisfying (C1) and (C2) and the following conditions: 
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(3.4) the pair (𝒜,𝒮) is 𝒜 -intimate and pair (ℬ, 𝒯 is ℬ -intimate; 

(3.5) 𝒜(𝔙) is a complete subspace of 𝔙. 

Then 𝓆 = 𝒜𝓆 = 𝒮𝓆 = ℬ𝓆 = 𝒯𝓆, and  𝓆 is unique in 𝔙. 

Proof Let 𝓍0 ∈ 𝔙 be an arbitrary point. From (C1) we can find 𝓍1 such that 𝒮(𝓍0) = ℬ(𝓍1) =

𝓎0 for this 𝓍1 one can find 𝓍2 ∈ 𝔙 such that 𝒯(𝓍1) = 𝒜(𝓍2) = 𝓎1.Continuing in this way, one 

can construct a sequence {𝓍𝑛} such that 

𝓎2𝑛 = 𝒮(𝓍2𝑛) = ℬ(𝓍2𝑛+1), 

𝓎2𝑛+1 = 𝒯(𝓍2𝑛+1) = 𝒜(𝓍2𝑛+2),  for each 𝑛 ≥ 0. 

From the proof of Theorem 2.1, the sequence {𝓎𝑛} is a Cauchy sequence in 𝔙. Since 𝒜(𝔙) is 

complete, ∃ a point 𝓆 ∈ 𝒜𝔙 such that 𝓎2𝑛+1 = 𝒯(𝓍2𝑛+1) = 𝒜(𝓍2𝑛+2) → 𝓆 as 𝑛 → ∞. 

Consequently, we find 𝓅 ∈ 𝔙 such that 𝒜𝓅 = 𝓆. Since {𝓎𝑛} is a Cauchy sequence containing a 

convergent subsequence {𝓎2𝑛+1}, therefore the sequence {𝓎𝑛} also converges, which implies 

the convergence of {𝓎2𝑛}, being a subsequence of the convergent sequence {𝓎𝑛}. Hence 

{𝒮(𝓍2𝑛)}, {ℬ(𝓍2𝑛+1)}, {𝒯(𝓍2𝑛+1)}, {𝒜(𝓍2𝑛+2)} converges to 𝓆.  

Now we claim that 𝒮𝓅 =  𝓆. On putting 𝓊 = 𝓅 and 𝓋 = 𝓍2𝑛+1 in (C2) we get 

𝒹3(𝒮𝓅, 𝒯𝓍2𝑛+1)

≤ 𝜓

{
 

 
𝒹2(𝒜𝓅, 𝒮𝓅)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓅, 𝒮𝓅)𝒹2(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓅, 𝒮𝓅)𝒹(𝒜𝓅,𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓅),

𝒹(𝒜𝓅,𝒯𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓅)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)}
 

 

− ∅ {𝓂(𝒜𝓅,ℬ𝓍2𝑛+1)},   

Where 𝓂(𝒜𝓅,ℬ𝓍2𝑛+1) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓅,ℬ𝓍2𝑛+1),

𝒹(𝒜𝓅, 𝒮𝓅)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1),

𝒹(𝒜𝓅, 𝑇𝓍2𝑛+1)𝒹(ℬ𝓍2𝑛+1, 𝒮𝓅),

1

2
[

𝒹(𝒜𝓅, 𝒮𝓅)𝒹(𝒜𝓅, 𝒯𝓍2𝑛+1)

+𝒹(ℬ𝓍2𝑛+1, 𝒮𝓅)𝒹(ℬ𝓍2𝑛+1, 𝒯𝓍2𝑛+1)
]
}
 
 

 
 

 

Proceeding limit as 𝑛 → ∞,weget 

𝒹3(𝒮𝓅, 𝓆) ≤ 𝜓{0,0,0,0} − ∅(𝒹2(𝒜𝓅, 𝓆)), 



2709 

COMPATIBLE MAPPINGS AND ITS VARIANTS 

using property of 𝜓 and ∅, we have 𝒹3(𝒮𝓅, 𝓆) = 0, which implies 𝒮𝓅 = 𝓆. 

Therefore, 𝒜𝓅 = 𝒮𝓅 = 𝓆. 

Since 𝓆 = 𝒮𝓅 ∈ 𝒮(𝔙) ⊂ ℬ(𝔙), ∃ a point 𝓌 in 𝔙 such that ℬ𝓌 =  𝓆. 

Next, we claim that 𝓆 =  𝒯𝓌. On putting 𝓊 = 𝓅 and 𝓋 = 𝓌 in (C2) we get 

𝒹3(𝒮𝓅, 𝒯𝓌) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓅, 𝒮𝓅)𝒹(ℬ𝓌,𝒯𝓌),

𝒹(𝒜𝓅, 𝒮𝓅)𝒹2(ℬ𝓌,𝒯𝓌),

𝒹(𝒜𝓅, 𝒮𝓅)𝒹(𝒜𝓅, 𝒯𝓌)𝒹(ℬ𝓌, 𝒮𝓅),

𝒹(𝒜𝓅,𝒯𝓌)𝒹(ℬ𝓌, 𝒮𝓅)𝒹(ℬ𝓌,𝒯𝓌)}
 

 

− ∅ {𝓂(𝒜𝓅,ℬ𝓌)},   

where 𝓂(𝒜𝓅,ℬ𝓌) = 𝑚𝑎𝑥

{
 
 

 
 

𝒹2(𝒜𝓅, ℬ𝓌),

𝒹(𝒜𝓅, 𝒮𝓅)𝒹(ℬ𝓌,𝒯𝓌),

𝒹(𝒜𝓅, 𝑇𝓌)𝒹(ℬ𝓌, 𝒮𝓅),

1

2
[
𝒹(𝒜𝓅, 𝒮𝓅)𝒹(𝒜𝓅,𝒯𝓌)

+𝒹(ℬ𝓌, 𝒮𝓅)𝒹(ℬ𝓌,𝒯𝓌)
]
}
 
 

 
 

= 0. 

On simplification, we have 

𝒹3(𝓆, 𝒯𝓌) ≤ 𝜓{0,0,0,0} − ∅(0) 

Thus we get  𝒹3(𝓆, 𝒯𝓌) = 0, which implies that𝓆 = 𝒯𝓌. 

Hence ℬ𝓌 = 𝒯𝓌 = 𝓆. 

Since 𝒜𝓅 = 𝒮𝓅 = 𝓆 and the pair (𝒜,𝒮) is 𝒜 -intimate, by Proposition 3.3, we have  

𝒹(𝒜𝓆 , 𝓆)  ≤ 𝒹(𝒮𝓆 , 𝓆). 

Next, we claim that 𝓆 =  𝒮𝓆. On putting 𝓊 = 𝓆 and 𝓋 = 𝓌 in (C2) we get 

𝒹3(𝒮𝓆, 𝒯𝓌) ≤ 𝜓

{
 

 
𝒹2(𝒜𝓆, 𝒮𝓆)𝒹(ℬ𝓌,𝒯𝓌),

𝒹(𝒜𝓆, 𝒮𝓆)𝒹2(ℬ𝓌,𝒯𝓌),

𝒹(𝒜𝓆, 𝒮𝓆)𝒹(𝒜𝓆,𝒯𝓌)𝒹(ℬ𝓌, 𝒮𝓆),

𝒹(𝒜𝓆, 𝒯𝓌)𝒹(ℬ𝓌, 𝒮𝓆)𝒹(ℬ𝓌,𝒯𝓌)}
 

 

− ∅ {𝓂(𝒜𝓆,ℬ𝓌)},   

Where 𝓂(𝒜𝓆,ℬ𝓌) = 𝑚𝑎𝑥

{
 

 
𝒹2(𝒜𝓆,ℬ𝓌), 𝒹(𝒜𝓆, 𝒮𝓆)𝒹(ℬ𝓌,𝒯𝓌),

𝒹(𝒜𝓆, 𝑇𝓌)𝒹(ℬ𝓌, 𝒮𝓆),

1

2
[
𝒹(𝒜𝓆, 𝒮𝓆)𝒹(𝒜𝓆,𝒯𝓌)

+𝒹(ℬ𝓌, 𝒮𝓆)𝒹(ℬ𝓌,𝒯𝓌)
]

}
 

 

= 0. 

Therefore, 

𝒹3(𝒮𝓆, 𝓆) ≤ 𝜓{0,0,0,0} − ∅(0). 

Thus we get  𝒹3(𝒮𝓆, 𝓆) = 0,which further implies that 𝒮𝓆 = 𝓆. 
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Hence 𝒮𝓆 =  𝒜𝓆 =  𝓆. 

Similarly, we get  ℬ𝓆 =  𝒯𝓆 =  𝓆. 

The uniqueness follows easily. Hence 𝓆 = 𝒜𝓆 = 𝒮𝓆 = ℬ𝓆 = 𝒯𝓆, and  𝓆 is unique in 𝔙. 

 

4. APPLICATION  

 In 2002 Branciari [4] obtained a fixed point theorem for a single mapping satisfying an 

analogue of a Banach contraction principle for integral type inequality.  

Theorem   4.1 Let (𝔙, 𝒹) be a complete metric space and  𝒻 ∶  𝔙 →  𝔙  is a mapping such that, 

for each 𝓍, 𝓎 ∈ 𝔙 , 

∫ 𝜑(𝓉) 𝑑𝓉 ≤ 𝑐∫ 𝜑(𝓉) 𝑑𝓉
𝒹(𝓍,𝓎)

0

𝒹(𝓍,𝓎)

0

 

𝑐 ∈  [0, 1), where 𝜑 ∶  𝑅+  →  𝑅+ is a “Lebesgue-integrable function” which is summable, 

nonnegative, and such that, for each ∈> 0, ∫ φ(𝓉)d𝓉 >  0.
∈

0
 Then 𝒻 has a unique fixed point 𝓏 ∈

𝔙 such that, for each 𝓍 ∈  𝔙, lim
𝑛→∞

𝒻𝑛 =  𝓏. 

Now we prove the following theorem as an application of theorem 3.1. 

Theorem 4.2 Let 𝒮, 𝒯,𝒜  and ℬ   be four self-mappings of a complete metric space (𝔙, 𝒹)    

satisfying the conditions (C1), and the following conditions: 

      (C3)      

∫ 𝜑(𝓉) 𝑑𝓉 ≤ ∫ 𝜑(𝓉) 𝑑𝓉
𝑀(𝓍,𝓎)

0

𝒹3(𝒮𝓍,𝒯𝓎)

0

 

𝑀(𝓊,𝓋) = 𝜓

{
 

 
𝒹2(𝒜𝓊, 𝒮𝓊)𝒹(ℬ𝓋, 𝒯𝓋),

𝒹(𝒜𝓊, 𝒮𝓊)𝒹2(ℬ𝓋, 𝒯𝓋),
𝒹(𝒜𝓊, 𝒮𝓊)𝒹(𝒜𝓊,𝒯𝓋)𝒹(ℬ𝓋, 𝒮𝓊),
𝒹(𝒜𝓊,𝒯𝓋)𝒹(ℬ𝓋, 𝒮𝓊)𝒹(ℬ𝓋, 𝒯𝓋)}

 

 
− ∅ {𝓂(𝒜𝓊,ℬ𝓋)},   

where 𝓂(𝒜𝓊,ℬ𝓋) = 𝑚𝑎𝑥

{
 

 
𝒹2(𝒜𝓊, ℬ𝓋), 𝒹(𝒜𝓊, 𝒮𝓊)𝒹(ℬ𝓋, 𝒯𝓋),

𝒹(𝒜𝓊, 𝑇𝓋)𝒹(ℬ𝓋, 𝒮𝓊),

1

2
[
𝒹(𝒜𝓊, 𝒮𝓊)𝒹(𝒜𝓊,𝒯𝓋)

+𝒹(ℬ𝓋, 𝒮𝓊)𝒹(ℬ𝓋,𝒯𝓋)
]

}
 

 
 



2711 

COMPATIBLE MAPPINGS AND ITS VARIANTS 

for all 𝓊,𝓋 ∈ 𝔙, where 𝜓: [0, ∞) → [0, ∞) is a continuous and non-decreasing function with 

𝜓(𝓉)< 𝑡 for each 𝓉 > 0 and ∅: [0, ∞) → [0, ∞) is a continuous function with ∅ (𝓉) = 0 ⇔𝓉 = 0 

and ∅(𝓉)  >  0  for each 𝓉 > 0.Further, where 𝜑 ∶  𝑅+  →  𝑅+  is a “Lebesgue-integrable over 

𝑅+function” which is summable on each compact subset of 𝑅+, non-negative, and such that for 

each ∈ > 0, ∫ φ(t)dt >  0.
∈

0
 Moreover, assume that the pairs the pairs (𝒜,𝒮) and (ℬ,𝒯) are 

compatible of type (𝐾). Then 𝓏 = 𝒜𝓏 = 𝒮𝓏 = ℬ𝓏 = 𝒯𝓏, and  𝓏 is unique in 𝔙. 

Proof. The proof of the theorem follows on the same lines of the proof of the theorem 3.1. On 

setting φ (t) = 1, we get theorem 3.1. 

Remark 4.1 Every contractive condition of integral type automatically includes a corresponding 

contractive condition not involving integrals, by setting φ (t) = 1 . 
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