ON THE MEAN VALUES OF AN ENTIRE FUNCTION REPRESENTED
 BY A DIRICHLET SERIES

DR. PRANEETA VERMA
Starex University, Gurgaon, India
pvpraneeta@gmail.com

ABSTRACT

In this paper, we obtain some results for the mean value of an entire Dirichlet series.
Theorem 1. (i) For $0<k<\infty, \delta>1$

$$
\begin{equation*}
\rho_{\lambda_{t}} \leq \lim _{\sigma \rightarrow \infty}=\frac{\log \log N_{s, i}(\sigma)}{\sigma} \leq \sum_{i}^{p} \tag{a}
\end{equation*}
$$

Under the additional condition on $\left\{\lambda_{2}\right\}$,

$$
\begin{equation*}
0 \leq \lim _{x \rightarrow \infty} \sup \frac{\log n}{\lambda_{0}}=D<\infty \tag{A}
\end{equation*}
$$

(a) Becomes

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \prod_{=1} \frac{\log \log N_{s, i}(\sigma)}{\sigma}={ }_{2}^{\beta}=\hat{2} \tag{b}
\end{equation*}
$$

(ii) For $0<k<\infty, \delta>0$

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \neq \frac{\log \log N_{\delta, t}(\sigma)}{\sigma} s_{A}^{\rho} \tag{c}
\end{equation*}
$$

In fact for the truth of 'lim sup' part of (b) the following condition on $\left\{\lambda_{3}\right\}$ is sufficient.

$$
\lim _{x \rightarrow \infty} \frac{\log n}{\lambda_{ \pm} \log \lambda_{s}}=0
$$

Theorem 2. (i) For $\delta>0,0<k<\infty$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \min _{m} \frac{\log N_{s t}(\sigma)}{e^{\beta \tau}} \leq_{1}^{T},(0<\rho<\infty) . \tag{d}
\end{equation*}
$$

(ii) For $\delta \geq 1,0<k<\infty$ and under the additional condition (A)

In particular case, if $\mathrm{D}=0$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \neq \log \frac{N_{\sigma, 1}(\sigma)}{e^{\alpha \sigma}}={ }_{L}^{r_{i}}={ }_{t} \tag{c}
\end{equation*}
$$

KEYWORDS: - Generalized order ρ Generalized lower order λ

INTRODUCTION: In the usual notation,

$$
f(s)=\sum_{1}^{x} a_{s} e^{c h},(s=\sigma+i t), 0<\lambda_{s}<\lambda_{s+1} \quad(n \geq 1) \lim _{* \rightarrow \infty} \lambda_{z}=\infty,
$$

Is an entire function in the sense that the Dirichlet series representing it, is absolutely convergent for all finite s and possesses two generally different pairs of orders:

$$
\lim _{x \rightarrow *} \sup _{\inf } \frac{\log \log M(\sigma)}{\sigma}=\frac{\rho}{\lambda} ;
$$

is an absolutely and uniformly convergent function of t and hence ($[2], p .6$) a function of t which uniformly almost periodic (briefly u.a.p.) $|f(\sigma+i t)|^{\delta}, \delta>0$ is also a function of t which is u.a.p., as shown b familiar considerations (e.g. as in [2] p.3) involving the following well known inequalities for $a>0, b>0$.
$(a+b)^{s} \leq a^{s}+b^{s}$ if $0<\delta<1, a^{s}-b^{s} \leq \delta_{a}{ }^{-1}(a-b)$, if $\delta \geq 1, a \geq b$.
By the result ([2], p. 12) the mean value of $|f(\sigma+i t)|^{s}, \delta>0$, defined by $A_{2}(\sigma)$ exists.
For $\delta>0$ it is obvious that

$$
I_{s}(\sigma) \leq M(\sigma) .
$$

This, with (1.2) will give us

$$
\begin{equation*}
N_{s, t}(\sigma) \leq \frac{M(\sigma)}{k} \tag{2.4}
\end{equation*}
$$

From which it follows that

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \min _{\min f} \frac{\log \log N_{s, k}(\sigma)}{\sigma} \leq_{\lambda}^{\rho}, 0<k<\infty, \delta>0 . \tag{2.5}
\end{equation*}
$$

This formula gives us

$$
\mu(\sigma) \leq \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(\sigma+i t)| d t=I_{1}(\sigma)
$$

If $\delta>1$, we also get by Holder integral inequality $\mu(\sigma) \leq \lim _{T \rightarrow \infty}\left[\frac{1}{2 T} \int_{-T}^{T}|f(\sigma+i t)|^{b} d t\right]^{\frac{1}{s}}\left[\frac{1}{2 T} \int_{-T}^{T} d t\right]^{\frac{1}{\delta t}}$ where $\frac{1}{\delta}+\frac{1}{\delta}=1$. Hence

$$
\mu(\sigma) \leq I_{\delta}(\sigma) \text { for } \delta \geq 1
$$

From (1.2), we have for $h>0$,

$$
\begin{equation*}
N_{\delta, k}(\sigma+h) \geq \frac{\mu(\sigma)}{k}\left(1-e^{-i k}\right) \tag{2.6}
\end{equation*}
$$

This leads to

$$
\frac{\log \log N_{\delta, 1}(\sigma+h)}{(\sigma+h)} \geq \frac{\log \log \mu(\sigma)}{(\sigma+h)}+o(1)
$$

Proceedings to limits, we get

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \operatorname{mip}_{\inf } \frac{\log \log N_{s, \lambda}(\sigma)}{\sigma} \geq{ }_{i} \tag{2.7}
\end{equation*}
$$

Combining (2.5) and (2.7), we get

$$
\hat{i}_{i}<\lim _{\sigma \rightarrow \infty} \lim _{i=1} \frac{\log \log N_{\sigma, 4}(\sigma)}{\sigma} \leq_{i}^{p}
$$

To prove (2.2), we use the known result ([10], p. 68) that, under the condition (A),

$$
M(\sigma)<K \mu(\sigma+D+\sigma)
$$

where ε is an arbitrary small positive number, K is a constant depending on D and ε. This give $\rho \leq \rho$, and $\lambda \leq \lambda$ but $\rho .<\rho$ and $\lambda<\lambda$ always. Thus, (2.2) proved.

It is known that under the condition (A^{\prime})

$$
\rho=\lim _{x \rightarrow \infty} \sup \frac{\lambda_{n} \log \lambda_{n}}{\log \left|a_{n}\right|^{-r}},[1] .
$$

Further, from the result of Reddy [8] we conclude that

$$
\rho_{s}=\lim _{x \rightarrow \infty} \sup \frac{\lambda_{n} \log \lambda}{\log \left|a_{n}\right|^{-1}} .
$$

$$
\lim _{n \rightarrow \infty} \sup \frac{\log \log \mu(\sigma)}{\sigma}=\rho_{\lambda} ;
$$

Where $0 \leq \lambda, \rho \leq \infty, 0 \leq \lambda, \rho . \leq \infty$, and $M(\sigma), \mu(\sigma)$ their usual meanings, viz.

$$
M(\sigma)=\begin{gathered}
l u b . \\
-\infty<t<\infty
\end{gathered}|f(\sigma+i t)|, \mu(\sigma)=\max _{n=1}\left|a_{n} e^{(\sigma+*)<}\right|
$$

The type T , tassociated with ρ and type $\mathrm{T} \cdot, t$, associate with ρ, are defined in the usual way as follo

$$
\begin{aligned}
& \lim _{\sigma \rightarrow \infty} \sup \frac{\log M(\sigma)}{e^{\rho \sigma}}={ }_{t}^{T}, \quad(0<\rho<\infty) \\
& \lim _{\sigma \rightarrow \infty} \sup \frac{\log \mu(\sigma)}{e^{\rho, \sigma}}=\frac{T_{t},}{t_{0}}, \quad(0<\rho,<\infty) .
\end{aligned}
$$

The mean values of $t(s)$ are defined as follows:

$$
\begin{align*}
& \left\{I_{s}(\sigma)\right\}^{s}=A_{s}(\sigma)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(\sigma+i t)|^{s} d t, 0<\delta<\infty, \tag{1.1}\\
& N_{s, t}(\sigma)
\end{aligned}=\frac{1}{e^{k \sigma}} \int_{-\infty}^{\sigma} I_{s}(x) e^{k t} d x \quad \begin{aligned}
& T \rightarrow \infty \\
& \\
& =\lim _{T \rightarrow \infty} \frac{1}{2 T e^{t \sigma}} \int_{-\infty}^{\sigma} \int_{-T}^{T}|f(x+i t)|^{\delta} e^{k x} d x d t \quad, \quad 0<\delta<\infty \\
& 0<k<\infty
\end{align*} .
$$

Clearly $\rho_{.} \leq \rho$ and $\lambda_{1} \leq \lambda$. There are entire Dirichlet series for which $\rho_{.}<\rho, \lambda_{0}<\lambda(\sec [9], \operatorname{Sarz} 4$ So, we have generally to distinguish between the two orders of an entire Dirichlet series and its type associated with these orders.

Theorem 1. (i) For $0<k<\infty, \delta \geq 1$

$$
\begin{equation*}
\rho_{\lambda_{0}} \leq \lim _{\sigma \rightarrow \infty} \operatorname{mop}_{\operatorname{sot}} \frac{\log \log N_{i, \lambda}(\sigma)}{\sigma} \leq_{\lambda}^{\rho} \tag{2.1}
\end{equation*}
$$

Under the additional condition on $\left\{\lambda_{n}\right\}$,

$$
\begin{equation*}
0 \leq \lim _{n \rightarrow \infty} \operatorname{miof}^{\operatorname{uof}} \frac{\log n}{\lambda_{n}}=D<\infty, \tag{A}
\end{equation*}
$$

(2.1) becomes

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \frac{\log \log N_{s, A}(\sigma)}{\sigma}==_{i}==_{i}^{p} \tag{2.2}
\end{equation*}
$$

(ii) For $0<k<\infty, \delta>0$

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \operatorname{mig}_{\operatorname{wof}} \frac{\log \log N_{s, \lambda}(\sigma)}{\sigma} \leq_{i}^{p} \tag{2.3}
\end{equation*}
$$

In fact for the truth of 'lim sup' part of (2.2) the following condition on $\left\{\lambda_{2}\right\}$ is sufficient.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n} \log \lambda_{n}}=0 \tag{A'}
\end{equation*}
$$

Proof. For fixed σ,

$$
f(\sigma+i t)=\sum_{1}^{\infty}\left(a_{n} e^{i, \tau}\right) e^{\lambda_{n},}, \quad(-\infty<t<\infty)
$$

Theorem 2. (i) For $\delta>0,0<k<\infty$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \operatorname{mip}_{\operatorname{un} t} \frac{\log N_{s d i}(\sigma)}{e^{\rho \pi}} \leq_{1}^{T},(0<\rho<\infty) . \tag{3.1}
\end{equation*}
$$

(ii) For $\delta \geq 1,0<k<\infty$ and under the condition (A)

In particular case, if $\mathrm{D}=0$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow \pi} \operatorname{lom}_{=10} \log \frac{N_{s, t}(\sigma)}{e^{\sigma \pi}}==_{1}^{\pi}==_{t}^{r} \tag{3.3}
\end{equation*}
$$

Proof. From (2.4), we get

$$
\lim _{\sigma \rightarrow \infty} \operatorname{imf}_{i=1} \frac{\log N_{\delta \lambda}(\sigma)}{e^{\beta \sigma}} \leq \lim _{\sigma \rightarrow \infty}=\frac{\log M(\sigma)}{e^{\beta \sigma}} .
$$

From which (3.1) follows.
To prove (3.2), we use (2.4), (2.6) and the known result $M(\sigma)<K \mu(\sigma+D+\varepsilon)[10]$, where ε is an arbitrary small positive number and K is constant depending on D and ε. We have
$\lim _{\sigma \rightarrow \infty} \operatorname{mup}_{\ldots} \frac{\log \mu(\sigma)}{e^{\rho \sigma}} \leq \lim _{\sigma \rightarrow \infty}=\frac{\log M(\sigma)}{e^{\rho \sigma}} \leq \lim _{\sigma \rightarrow \infty} \Xi \frac{\log \mu(\sigma+D+\varepsilon)}{e^{\rho \sigma}}$
And

Combining these two, we get desired conclusion (3.2). The particular case (3.3) is obvious. Conclusion: . Our theorem includes the results of Jain [5], which in turn includes the theorem of Juneja [6] and also a theorem of Gupta [3]. The method of proofs of our results is different from that of Jain. Jain has used in his proof the following result of Kamthan [7]

Finally, I take this opportunity to thanks Dr. J.P. Singh, for his valuable suggestions in the preparation of this paper.

REFERENCE

1) A.G. Azpeitia, A remark of the Ritt order of entire functions defined by Dirichlet series, Proc. American Math. Soc., 12 1961), 722-723.
2) A.S. Besicovitch, Almost Periodic Functions, Dover Edition, 1954.
3) J.S. Gupta, on the mean values of integral functions and their derivatives defined by Dirichlet series, American Math. Monthly, 71 (1964), 520-523.
4) P.K. Jain, Some aspects of growth relations in the theory of entire and xeromorphic functions, Ph.D. Thesis, Delhi University, 1969.
5) P.K. Jain, Growth of the mean values of an entire function represented by Dirichlet series, Math. Nachr. 44 (1970), 91-97.
6) O.P. Juneja, on the mean values of entire function and its derivatives represented by Dirichlet series, Ann. Polon. Math., 18 (1966), 307-317.
7) P.K. Kamthan, on entire functions represented by Dirichlet series IV, Ann. Inst. Fourier, 16 (1966), $209-$ 223.
8) A.R. Reddy, on entire Dirichlet series of infinite order I, Rev. Mat. Hisp. Amer. 27 (1967), 120-131.
9) K. Sugimura, Ubertragung einiger satze aus der theorie der ganzen functionen auf Dirichletsche reihen, Math. Zeitschr., 29 (1928-29), 264-277.
10) Y.C. Yung, Sur les driotes de Borel de certaines functions entieres, Ann. Sci. E' Cole Norm. Sup. (3), 68 (1951), 65-104.
