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ABSTRACT
In this paper, we obtain some results for the mean value of an entire Dirichlet series.
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INTRODUCTION: In the usual notation,
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s an entire function in the sense that the Dinchlet series representing it, is absolutely convergent for
all finite 5 and possesses two generally different pairs of orders:
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is an absolutely and uniformly convergent function of r and hence ([2], p.6) a function of ¢ which 1

uniformly almost periodic (briefly w.a.p.) |f[a‘+ u'f,ﬁ >0 is also a function of r which is wa p., as shown b
familiar considerations (e.g. as in [2] p.3) involving the following well known inequalities for a =0, b >0,
(a+b)* <a® +b6°if0<b<la*-b" <8, (a-b), if62la2b.
By the result ([2], p. 12) the mean value of | f(o + t'f)]’fﬁ > 0,defined by A, (o )exists.
For & >0 it is obvious that
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Combining (2.5) and (2.7), we get
o 10g log N”{cr)
.l

h 5
o <lim 3

& —wm

o
To prove (2.2), we use the known result ([10], p. 68) that, under the condition (A),
M(e)<K u{c+D+5)

where &is an arbitrary small positive number, K is a constant depending on D and &. This give
psp.and A S A but p.<pand A, </ always. Thus, (2.2) proved.
It is known that under the condition (A")
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Further, from the result of Reddy [8] we conclude that
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Where 0< 4, p<0,0< 4, p. < ,and M (o), u(o) their usual meanings, viz.
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The type T, tassociated with pand type Ts, t, associate with p, are defined in the usual way as follo
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The mean values of t (s) are defined as follows:
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Clearly p, < pand A Si.Then: are entire Dirichlet series for which p, < p,4, <A (sec[9],Sarz 4

So, we have generally to distinguish between the two orders of an entire Dirichlet series and its type
associated with these orders,

(1.2)
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In fact for the truth of 'lim sup’ part of (2.2) the following condition on {4,) is sufficient.
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Proof. From (2.4), we get
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From which (3.1) follows.
To prove (3.2), we use (2.4), (2.6) and the known result M{o)<K u(o+ D + £)[10], where £ is an

arbitrary small positive number and K is constant depending on D and & . We have
m Iug,u{ﬁ}ii. _IogM{u'} o 0B (o + D +£)

|

’_“ﬂ' EPI‘-" e f ﬂ'—l-‘ f"-

And

. wp logule) . Jlog N (o) log M (o)
P_ e — - —  ————————

Imu = sEng————<Im =T

Combming these two, we get desired conclusion (3.2). The particular case (3.3) is obvious.
Conclusion: . Our theorem includes the results of Jain [5], which in um includes the theorem of Juneja [6]
and also a theorem of Gupta [3]. The method of proofs of our results is different from that of Jan. Jain has
used in his proof the following result of Kamthan [7]

Finally, I take this oppertunity to thanks Dr. J.P. Singh, for his valuable suggestions in the preparation
of this paper.
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