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ABSTRACT 
In this paper, we obtain some results for the mean value of an entire Dirichlet series. 

THEOREM I. 0For0<k <s,8>1 

limgiogN,,()g ) 

Under the additional condition on 12, 

Os lim sup D<, A) 

(@) Becomes 

lim giOg Nas () 
D) 

(u) For 0<k <o,ð>0 

log log Nas 
In fact for the truth of "lim sup' part of (b) the following condition on {2) is sufficient. 

limg=0. 
2, log, (A) 

THEOREM 2. ()Forô>0, 0<k<o, 

(0<pe). 
(i) Forö2l, 0<k co and under the additional condition (A) 

lim8,() C) e 
In particular case, if D = 0, 

imlog = () 
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INTRODUCTION: In the usual notation, 

So)=2a,,(6 =d+ i),0<4, <, (n 2 ) lim a, = 

Is an entire function in the sense that the Dinichlet senies representing it, is absolutely convergent for 
all finite s and possesses two generally difterent pairs of orders: 

sup log log M (C) -"; inf 
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is an absolutely and uniformly convergent function of t and hence ([2]. p.6) a function of t which i 

uniformly almost periodic (briefly u.ap.)SG+in.8>0 is also a function of r which is u.ap. as shown b 
familiar considerations (eg. as in [2] p.3) involving the following well known inequalities for a >0,b >0 

(a +b sa' +b°f0<8< l,a" -b° s6, (a-b), if6 2 1,a 2b. 

By the result (2. p. 12) the mean value of |fa+f.6>0, defined by A, (0) exists. 

For 6>0 it is obvious that 

I(o)sM(o). 
This, with (1.2) will give us 

Ns(a)s (2.4) k 
From which it follows that 

lim ,0<k<, Q>0. (2.5) 
This formula gives us 

ulo) slimVa +nldt =1,o) 

If 8 >1, we also get by Holder integral inequality u(o) s lim Sa+ 

wheret1. Hence 
) SI,(a) Jor 6 21 

From (1.2), we have for h >0, 

Ns(G+h)2 -*) (2.6) 
This leads to 

loglog N,,(G+h loglog ul+ o(l) 
(+h) (a+h) 

Proceedings to limits, we get 

lim SN()2 . (2.7) 
Combining (2.5) and (2.7), we get 

lim gOgNs (a) 

To prove (2.2), we use the known result ([10]). p. 68) that, under the condition (A), 

M(o)<Ku(T+D+6) 
where & is an arbitrary small positive number, K is a constant depending on D and &. This give 
PSp.andA si. but p.spand 7 <i always. Thus, (2.2) proved. 

Tt is known that under the condition (A) 

P= lim sup 0 

logla. 
Further, from the result of Reddy [8] we conclude that 

P, lim sup o84 

logla. 
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lim 3p log log /u (a)_P. 

int 

Where 0 s À,pso,0s ,p. S o, and M (o),u(o) their usual meanings, viz. 

MO) lo+} a(o)=mas lo,*| 
The type 1, tassociated with pand type T:,t, associate with p, are defined in the usual way as follov 

sup log M (-, (0<p<o) inf 

sup log #(a).", (0< p. <o). 
Int e . 

The mean values of t (s) are defined as follows: 

U,(o)-4, (o)= lim a +nf'dt. 0<6ce, (1.1) 

N ()i,)e'a 

(1.2) 
0<k<o 

Clearly p. s pand 2. s. There are entire Dirichlet series for which p. <p.] <2 (sec[9].Sarz4 

So, e have gnerally to distinguish berween the two orders of an entire Dirichlet series and its type 
assoc iated with these orders 

THEOREM 1. )For0 <k<o, 82l 

lim Iog N,, (a)s (2.1) 

Under the additional condition on 12,}, 

0s lim =D<o, (A) 

(2.1) becomes 

lim SN()_, (2.2) 

(i) For 0<k <co,ð>0 

log log Naas (2.3) 

In fact for the truth of "lim sup' part of (2.2) the following condition on {4, is sufficient. 

log log . (A') 

Proof. For fixed a, 

flo+n) = 2(a,e")e, (-o<I<®) 

204 P ag 



THEOREM 2. ()ForQ>0,0<k <o, 

lim .0«pe). 
(i) For 82l,0<k<o and under the condition (A) 

(3.1) 

(3.2) 
In particular case, if D =0, 

limlog (3.3) 
** 

Proof. From (2.4), we get 

lim slimog M(a) 
From which (3.1) follows. 

To prove (3.2), we use (2.4), (2.6) and the known result M(o)<k u(a+ D+6)[10], where E is an 

arbilrary small postive number and K is constant depending on D and s. We bave 

lim slim og M () s lim -ogu{G+D+c) 

And 

lim limg4Os limogM () 
e 

Combning these two, we get desired conclusion (3.2). The particular case (3.3) is obvious. 
Conclusion: .Our theorem includes the resuts of Jain (51, which in tun inchudes the theorem of Juneja [6] 
and also a theorem ot Gupta 13. The method of proofs of our results is different from that of Jain. Jain has 

used in his proof the following result of Kamthan [7 
Finaly. I take this opportunity to thanks Dr. J.P. Singh, for his valuable suggestions in the preparation 

of this paper. 
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