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Abstract: Zinc oxide (ZnO) nanowires (NWs) are wide-bandgap semiconductors that absorb ultra-
violet (UV) radiation. Various post-treatment processes have been studied to improve the optical
properties of the as-grown ZnO NWs. Among them, Ag nanoparticles (NPs) effectively improved
the optical properties on the surface of the ZnO NWs. In this study, ZnO NWs were synthesized
via the hydrothermal synthesis method. ZnO NWs were decorated with Ag NPs on the surface of
the ZnO NWs in a silver nitrate (AgNO3) aqueous solution by intense pulsed light (IPL) irradiation.
Ag NPs were successfully decorated under the following conditions: aqueous AgNO3 solution of
100 nM, an energy of 1 J/cm2, and an exposure time of 8 ms. The responsivity and sensitivity of the
ZnO NW UV photodetectors increased by 7.43 and 3.37 times, respectively. The IPL process makes it
possible to decorate Ag NPs in a simple manner within an extremely short time.

Keywords: intense pulsed light (IPL); ZnO nanowire; Ag nanoparticles; nanocomposites; UV pho-
todetector

1. Introduction

Zinc oxide (ZnO) is a wide-bandgap semiconductor with a bandgap of 3.37 eV and
absorbs ultraviolet (UV) radiation, thus causing an electron transition from the valence
to the conduction band [1–3]. It also has a high-exciton binding energy of ~60 meV and
exhibits biological inertness at room temperature [4–6]. Particularly, ZnO nanostructures
can be easily synthesized by a low-temperature (below 100 ◦C) solution process [7–9].
They are attracting great attention in research and industrial sectors, because they can be
implemented in various forms of thin-films (TFs) [10], nanoparticles (NPs) [11], nanowires
(NWs) [8], nanorods (NRs) [12], nanosheets (NSs) [13], nanobelts [14], nanotubes [15], and
nanoflowers [16]. ZnO exhibits excellent performance in electronics, optics, and photonics,
and finds a variety of applications, such as in light-emitting diodes [17], photocatalysts [18],
gas sensors [19], biosensors [20], nanogenerators [21], and UV photodetectors (PDs) [7].
In particular, ZnO has attracted significant attention as an optoelectronic device. ZnO
has thermal and chemical stability, environmental friendliness, and ultra-high radiation
hardness, making it suitable for photonic applications on the UV spectral range without
additional filters [22,23].

Attempts have been made to improve the properties of ZnO with annealing [24],
impurity doping [25], plasma treatment [26], and UV treatment [27]. In addition, Ag
NPs were incorporated to improve the properties using thermal techniques [28], UV
techniques [29], evaporation [30], sputtering [31], and electrodeposition [32]. Among them,
the thermal and UV techniques have employed the solution process. The advantage of a
solution process is its inexpensiveness compared with the vacuum process. However, it
is a time-consuming process. The reported process times for thermal and UV techniques
were 3 h and 30 min, respectively [28,33]. Furthermore, the thermal technique requires
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exposure to high temperatures amounting to several hundred degrees [28]. Conversely,
the intense pulsed light (IPL) process is facile, rapid, and efficient at room temperature.
Therefore, replacing the energy source from heat or UV to IPL can be advantageous.

In this study, we decorated Ag NPs using a facile and rapid IPL process to improve the
properties of the hydrothermally as-grown ZnO NWs and fabricated the Ag-decorated ZnO
NW UV PDs. The ZnO NWs were synthesized via a typical hydrothermal synthesis method.
Hydrothermal synthesis is the most well-known method for synthesizing vertically aligned
ZnO NWs directly on the substrate in a solution process [34]. Compared with the other
methods, the hydrothermal method is a potential and effective way to synthesize ZnO
nanowires with the advantages of mild reaction conditions, environment-friendly, and easy
to control [35]. Furthermore, it is easy to manufacture single-crystalline nanostructures [36].
The Ag decoration was carried out in an AgNO3 aqueous solution by varying the concen-
tration and irradiation energy of IPL. The IPL irradiation was performed for an extremely
short time on the order of milliseconds. The Ag-decorated ZnO NWs were characterized
by several analytical techniques. Finally, the Ag-decorated ZnO NWs were exploited in UV
PDs to demonstrate enhanced properties, thereby improving the performance of UV PDs.

2. Materials and Methods
2.1. Synthesis of ZnO NWs

Figure 1 shows the fabrication process of the Ag-decorated ZnO NW UV PDs, in-
cluding hydrothermal growth of ZnO NWs, Ag-decoration with IPL, and formation of
electrodes using ink-jet printing. First, the ZnO NWs were synthesized using the hy-
drothermal method [8,37]. The Zn seed layer was prepared on a SiO2/Si substrate by
sol-gel spin-coating of a mixture of zinc acetate dihydrate (0.5 M) and diethanolamine
(0.5 M) in ethanol at 4000 rpm for 30 s. It was followed by heat-treatment at 350 ◦C for
30 min on a hotplate. Subsequently, ZnO NWs were grown hydrothermally at 90 ◦C for 4 h
in a mixture of zinc nitrate hexahydrate (25 mM) and hexamethylenetetramine (25 mM) in
deionized (DI) water.
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Figure 1. Schematic of fabrication for the Ag-decorated ZnO NW UV PDs.

2.2. Ag Decoration on as-Grown ZnO NWs

The as-grown ZnO NWs were decorated with Ag NPs using a facile and rapid IPL
process. The SiO2/Si substrate on which ZnO NWs have been grown was dipped into
silver nitrate (AgNO3) in DI water followed by IPL exposure. AgNO3 played the role of
precursor for Ag NPs. The IPL equipment used in this study was composed of a Xenon
flash lamp (P4128, Heraeus Co., Hanau, Germany), pulse controller (PSTEK Co., Gunpo,
Korea), power supply, capacitors, and chilling unit. The concentrations of the Ag precursor
and IPL irradiation energy were adopted as process variables in the Ag-decoration process.
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The IPL exposure was conducted with a single exposure, which lasted 8 ms. After the IPL
process, the substrate was thoroughly rinsed with DI water.

2.3. Fabrication of UV PDs

The electrodes were fabricated on the Ag-decorated ZnO NWs by printing silver
ink (DGP 40LT-13C, Advanced Nano Products Co., Sejong, Korea) with an ink-jet printer
(DMP-2831, FUJIFILM Dimatix Co., Santa Clara, CA, USA) for UV PDs. The electrodes had
dimensions of 2 mm × 2 mm and a channel length of 120 µm.

2.4. Characterization

Field-emission scanning electron microscopy (FE-SEM) (S-4800, Hitachi Co., Tokyo,
Japan), high-resolution transmission electron microscopy (HR-TEM) (JEM-2100F, JEOL
Co., Tokyo, Japan), and energy-dispersive X-ray spectroscopy (EDS) were used for mor-
phological study of Ag-decorated ZnO NWs. X-ray photoelectron spectroscopy (XPS)
(K-Alpha, Thermo Fisher Scientific Co., Waltham, MA, USA) and photoluminescence (PL)
spectroscopy (LS55, PerkinElmer Co., Waltham, MA, USA) were used to analyze photocur-
rent characteristics. The performance of UV PDs was measured with a source meter (2634B,
Keithley Instruments Co., Cleveland, OH, USA) using a UV light-emitting diode (LED) at
a wavelength of 365 nm.

3. Results and Discussion
3.1. Ag-Decorated ZnO NWs

The SEM images of the hydrothermally as-grown ZnO NWs are shown in Figure 2.
The ZnO NWs were grown vertically on the SiO2/Si substrate and are densely packed.
They have an average diameter and length of 42 nm and 840 nm, respectively. The grown
ZnO NWs exhibit the hexagonal wurtzite structure, as shown in Figure 2a. This observation
is quite consistent with previous studies [8,9]. However, it was difficult to identify the
decorated Ag NPs with SEM, which have been done with TEM. Figure 2c,d show ZnO
NWs processed for 5 and 15 s in AgNO3 concentration of 1 mM at an IPL energy of 1 J/cm2

per pulse and frequency of 6 Hz, respectively. ZnO NWs are covered by Ag under excessive
conditions. As the IPL irradiation time increases, the surface is covered with more Ag,
which prevents a UV reaction on the surface.
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Figure 3 displays TEM images and elemental maps of the as-grown and Ag-decorated
ZnO NWs. Figure 3a−c shows the bright-field TEM images, in which the scale bars repre-
sent 50 nm. It is noted in Figure 3b, compared to the as-grown ZnO NW (Figure 3a), that
several circular particles formed on the surface of ZnO NWs processed in a AgNO3 concen-
tration of 100 nM at IPL irradiation energy of 1 J/cm2. However, no discernible particle
shape was observed on the surface of the ZnO NWs processed in a AgNO3 concentration
of 1 mM at 1 J/cm2 (Figure 3c). Elemental maps were acquired to confirm the distribution
of Ag elements and demonstrated in Figure 3d−f. The Zn and O were homogeneously
distributed with strong and high-density signals in all three conditions. However, this
is not the case for the Ag, which was distributed differently under three conditions. The
background signal from the as-grown ZnO nanowires is shown in Figure 3d, playing a role
of control. The Ag was concentrated at the same position with the circular particles in the
ZnO NWs processed in 100 nM at 1 J/cm2 (Figure 3e). The other part showed a slightly
higher signal than the background in as-grown ZnO NWs. In the ZnO NWs, processed
in 1 mM at 1 J/cm2, the Ag was evenly distributed on the surface of the ZnO NWs, as
shown in Figure 3f. It is certain that the Ag signal is stronger than the background in the
as-grown ZnO NWs. However, it does not build up large individual nanoparticles enough
to be observed in TEM. It can be explained by the following reasons. The strong energy
released from IPL induced nucleation from Ag+ on the surface of the ZnO NWs. When the
concentration of AgNO3 was high, simultaneous nucleation occurred on all surfaces of the
ZnO NWs. As shown in Figure 3f, circular particles were not yet formed, but Ag was evenly
distributed on the surface. However, at the low concentration of AgNO3, nucleation was
not uniform on the surface. Ag adsorbed on the surface of the ZnO NW was aggregated
for nucleation and formed into circular particles, as shown in Figure 3e.

Figure 4 illustrates the binding energy among Ag, Zn, and O for the bare and Ag-
decorated ZnO NWs. Figure 4a shows the full spectrum of the bare and ZnO NWs
processed in 100 nM at 1 J/cm2. The spectrum was calibrated based on C 1s at Eb = 284.8 eV.
The peaks from Zn and O were the same as the ones reported previously [26]. The peaks at
1021 and 1044 eV in Figure 4b,c are attributed to the Zn 2p3/2 and Zn 2p1/2, thus confirming
that Zn exists in a divalent state. There was no change in the peak of Zn with respect to
the concentration of AgNO3 solution and the IPL irradiation energy. It was confirmed
that the Ag decoration process did not affect the binding energy of the Zn. The peak at
529.8 eV in Figure 4d,e was attributed to the O 1s. The spectrum of O 1s can be fitted to
three Gaussian distributions representing different oxygen states. In general, the spectrum
of O 1s can be represented by Olattice, Onon-lattice, and Oadsorption. These are O2− ions in
the ZnO crystal lattice, O2− ions in the oxygen vacancy, and chemisorbed oxygen species
on the surface, respectively [38]. Figure 5a,b demonstrate the areal ratio of O 1s with
respect to the concentration of AgNO3 solution and IPL irradiation energy, respectively.
The areal ratio for Olattice was almost constant with no change. The areal ratio of Oadsorption

was maximized at 19.4% in ZnO NWs processed in 100 nM at 1 J/cm2, and 6.9% and
7.3% in ZnO NWs processed in 1 nM and 1 mM, respectively (Figure 5a). The ratio of
Onon-lattice was relatively opposite to Oadsorption. The real ratio of Oadsorption decreased
with increasing energy and was measured to be 5.9% in 100 nM at 5 J/cm2 (Figure 5b).
Furthermore, in the result of energy change, the ratio of Onon-lattice showed relatively
opposite trends. This means that the chemical activity of chemisorbed oxygen species
increased, owing to the high conductivity and catalytic properties of Ag NPs [39–42].
In contrast, when the concentration further increased, the surface area exposed to the
atmosphere was reduced by Ag, thereby reducing the amount of adsorbed oxygen species.
The decrease in Oadsorption with increasing IPL irradiation energy could also be explained
by the same reason. Figure 4f,g demonstrates the peaks at 367.3 and 373.3 eV from the Ag
3d3/2 and Ag 3d5/2 with respect to solution concentration and IPL energy, respectively. The
scattered dots denote the raw data, while the line represents the fitted data. The difference
(6.0 eV) in the binding energy indicates that Ag has a metallic nature [43]. The binding
energy shifted significantly to a lower binding energy compared with the pure metallic Ag
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(368.2 eV and 374.2 eV) [44], which is attributed to the interaction between the Ag NPs and
the ZnO NW. When the Ag NPs and the ZnO NW were attached together, they adjusted
the location of the corresponding Fermi energy level to the same value. Thus, there are
more free electrons than Ag NPs at the Fermi level. Given that the conduction band (CB)
of the ZnO NW was empty, free electrons can tunnel into the CB, and the valence of the
Ag increases. The binding energy of Ag+ was much lower than that of Ag0. Therefore,
the binding energy of Ag 3d shifted to a lower binding energy [45,46]. The peak of Ag 3d
decreased as the concentration and energy decreased, and the peak disappeared at 10 nM or
less. The atomic percentage of Ag was calculated to be 0.174 at% in ZnO NWs processed in
1 mM at 1 J/cm2, 0.048 at% those processed in 100 nM at 1 J/cm2, and 0.055 at% in 100 nM
at 5 J/cm2, respectively. Although Ag NPs were not observed in TEM, the Ag element
exists on the surface of the ZnO NWs, which is confirmed by the elemental map result.
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3d spectrum. (b,d,f) Plots at different concentrations, (c,e,g) plots at different IPL irradiation energies.
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Figure 5. Areal ratio of O 1s in XPS with respect to (a) AgNO3 concentration and (b) IPL irradia-
tion energy.

The PL spectra from ZnO NWs are demonstrated in Figure 6. Figure 6a presents the
PL spectra of the bare ZnO NWs processed in DI water, and the Ag-decorated ZnO NWs
processed in 100 nM at 1 J/cm2. The PL spectra of the ZnO NWs yielded a sharp peak
intensity at 381 nm, mainly owing to the band–band exciton recombination associated
with near-band edge emission [47–49]. Figure 6b,c displays the PL spectra with respect
to AgNO3 concentration and IPL irradiation energy, respectively. As the concentration of
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AgNO3 solution increases, the intensity of PL increases up to 100 nM and then decreases
again. Since the ZnO NW receives electrons from Ag NPs, the intensity of the PL increases.
However, an excessive decoration process lowered the intensity of PL [50]. The PL peak
decreased with an increase in the IPL irradiation energy, which is the same reason as in
excessive decoration.
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3.2. The Performance of Ag-Decorated ZnO NW UV PDs

Figure 7 shows the current measurement results at a bias voltage of 1 V. The UV PDs
used here employed the bare and Ag-decorated ZnO NWs processed in DI water and
various concentrations of AgNO3 solution. UV PDs were irradiated with a UV LED at a
wavelength of 365 nm and a power density of 850 µW/cm2. The temporal response curves
were obtained for a time of 50 s. The basic UV detection mechanism of the ZnO NWs is as
follows. Electrons in the absence of UV moved to the center of the ZnO NW owing to the
O2

− molecules adsorbed on the surface of the ZnO NW. It forms a thin conduction channel
in the center and a thick depletion region on the surface. In the presence of UV, the adsorbed
O2

− molecules were desorbed, and the ZnO NW conduction channel expanded, while
the depletion region narrowed. The widened conduction channel increased the current
flowing between electrodes. If the O2

− molecules were not desorbed, the current should
be saturated. When the UV was turned off again, O2

− molecules were adsorbed on the
surface, and the current decreased [7]. According to the experimental results, the highest
light current was shown in the ZnO NWs processed in 100 nM at 1 J/cm2, as shown in
Figure 7d. Figure 8 shows the responsivity and sensitivity with respect to the concentration
of AgNO3 solution and IPL irradiation energy. The responsivity and sensitivity were
calculated by the following equations [51,52]:

R =
Ilight − Idark

PA
, (1)

And:

S =
Ilight − Idark

Idark
× 100 (%), (2)

where R is the responsivity, S is the sensitivity, Ilight is the light current, Idark is the dark
current, A is the area between two electrodes, and P is the UV power. While the bare ZnO
NWs have a responsivity of 14 A/W, the most responsivity was 104 A/W found in ZnO
NWs processed in 100 nM at 1 J/cm2, which is 7.43 times increased, as shown in Figure 8a.
Meanwhile, the ZnO NWs processed in 1 mM at 5 J/cm2 exhibited the lowest responsivity
of 5.03 A/W, which was reduced by 64.1% compared to the bare ZnO NWs. The sensitivity
was calculated to be the highest of 28,951% for ZnO NWs processed in 100 nM at 1 J/cm2,
which is 3.39 times increased, as shown in Figure 8b. In addition, the external quantum
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efficiency (EQE), which is the ability of electrons generated by the excitation of photons, is
defined as follows [52].

EQE = R × 1240
λ

× 100%, (3)

where λ is the wavelength of UV light. It depends on the responsivity (R) at the same
wavelength (λ). At the largest responsivity, the EQE is calculated to be 35,312%. The
increase in responsivity and sensitivity by the Ag decoration process results from the
formed Ag NPs. The mechanism of UV detection by Ag NPs is described in Section 3.3.
The decrease in responsivity decreased the photocurrent, which is the difference between
the light current and dark current, owing to the decrease in oxygen species adsorbed
on the surface of the ZnO NWs, like the decrease in the peak of Oadsorption of XPS. The
performance of Ag-decorated ZnO by IPL was compared with the previous literature and
is summarized in Table 1. The performance includes the responsivity, sensitivity, and
response/recovery time of PDs based on the ZnO nanostructures decorated with metal
NPs. It is confirmed that our study demonstrated a significant improvement compared to
other literature.
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Table 1. Comparison of performances of ZnO nanostructure UV PDs decorated with metal NPs.

Materials Bias Voltage
(V)

Wavelength
(nm)

Responsivity
(A/W)

Sensitivity
(%)

Response/
Recovery Time

(s)
Ref.

ZnO NWs 1 365 14 8538 4.3/3.2 This work
Ag NPs-ZnO NWs 1 365 104 28,951 5.6/2.2 This work
Ag NPs-ZnO NWs 5 365 - ~8970 1.02/15.5 [53]
Ag NPs-ZnO NWs 0.5 365 - 239,992 4/36 [33]
Ag NPs-ZnO NWs 5 365 4.91 × 106 - 6.3/26.3 [54]
Ag NPs-ZnO NRs 0.2 380 12.4 - - [55]
Ag NPs-ZnO NRs 5 400 6.52 × 10−3 - -/157.77 [56]
Ag NPs-ZnO TFs 5 380 2.86 - 15/330 [57]
Ag NPs-ZnO TFs 20 365 ~0.04 - 3.89/4.38 [58]
Au NPs-ZnO NRs 3 365 - ~4385 - [59]
Au NPs-ZnO NRs 1 365 70 - - [60]
Au NPs-ZnO NSs 5 325 ~60 - - [61]
Al NPs-ZnO NRs 5 325 ~1.65 - 0.03/0.035 [62]
Ni NPs-ZnO NRs 1 325 0.124 - Prompt rise/rapid fall [63]

Figure 9 shows the various performances of the UV PDs with ZnO NWs processed
at optimal conditions. Figure 9a shows I-V curves on a voltage range of −5 to 5 V in the
absence and presence of UV. It is noted that there was an ohmic contact between the Ag
electrode and the Ag-decorated ZnO NWs. The conductivity of the channel between two
electrodes was greatly increased in the presence of UVs. This was ascribed to an expanded
conductive channel at the center of ZnO NWs. The results of the repeated measurements
with a 50-s interval are shown in Figure 9b. The response/recovery time and repeatability
were excellent. The time to reach 90% and 10% of the saturation state is defined as the
response and recovery time, respectively. The response/recovery times of the Ag-decorated
ZnO NWs PDs were and 5.6/2.2 s, respectively. The current was measured at increasing
powers of UV with 200, 410, 625, and 850 µW/cm2, and is shown in Figure 9c. As the UV
light power increases, the light current increases, and the response time decreases. The
higher power of UV, the more O2

− molecules desorbed from the surface of NWs. The
decreased response time is attributed to the increased desorption rate of the O2

− molecules
on the surface.
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Figure 9. (a) I-V curves in absence and presence of UV, and temporal variations of (b) repeatability, and (c) UV light energy
measurements of Ag-decorated the ZnO NWs.

3.3. UV-Detection Mechanism

Herein, a detection mechanism is proposed for Ag-decorated ZnO NW UV PDs, as
shown in Figure 10. Ag NPs play a dual role in UV PDs in enhancing the performance of
UP PDs. At first, the catalytic properties of Ag NPs increase the chemical activity of the
chemisorbed oxygen species, as shown in Figure 4d,e [39–42]. The increase in chemically
activated oxygen species widens the depletion region in ZnO NWs, as shown in Figure 10b.
More oxygen species are desorbed in the presence of Ag NPs upon exposure to UV light
than in the absence of Ag NPs, resulting in more photocurrent in the presence of Ag NPs,
as shown in Figure 10c,d. In general, ZnO NWs synthesized by the hydrothermal method
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are known to have a work function of 5.28 eV, an electron affinity of 4.35 eV, and a bandgap
of 3.37 eV [64,65]. The work function of Ag is 4.26 eV; however, the smaller the NP size,
the larger the work function [66,67]. The work function is found to be 5.3 eV when the
Ag NP size decreases below 30 nm. Consequently, a Schottky barrier was formed at the
interface of Ag NP and ZnO NW owing to the higher work function of Ag NP, as shown
in Figure 10e [33,65,66,68]. This also leads to the narrowing of the conducting channel
of the ZnO NWs, as shown in Figure 10b. The electrons were generated in the exposure
of UV light, and the holes moved toward the Ag NPs owing to the Coulombic force [69].
Some holes were trapped at the interface, and the rest passed through the Schottky barrier
and recombined with electrons, as shown in Figure 10f. This results in the narrowing of
the depletion region. The photogenerated electrons were secured by the recombination of
generated holes with the electrons from Ag NPs, which enhances lifetime. Additionally,
Ag NPs enhance the light absorption efficiency by particle-induced light scattering [70]. It
increases the number of photogenerated electron-hole pairs.
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4. Conclusions

In conclusion, we employed a facile and rapid IPL method to decorate ZnO NWs with
Ag NPs on the surfaces of the ZnO NWs grown vertically on the substrate. It was confirmed
that Ag was successfully decorated on the ZnO NW surface through TEM, elemental maps,
and XPS investigation. When the concentration of AgNO3 solution was lower than 100 nM,
the Ag NPs were not formulated efficiently. The ZnO NWs processed in 100 nM at 1 J/cm2

exhibited the most superior decoration of Ag NPs along with the highest photocurrent.
Further increase in the concentration and exposure energy of IPL resulted in a decrease in
electrical performance of the ZnO NW PDs. The decoration process in this study boasts of
extremely short (~8 ms) duration. Our results clearly indicate that the IPL process used in
the current work is an efficient way to decorate Ag on ZnO NWs. Considering that it is
difficult to improve the crystal quality of the ZnO NW grown at low temperatures, this can
act as an exemplary guideline for the improvement of UV PD performance.
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