Few Properties of $\boldsymbol{m}_{2, \boldsymbol{k}}(\boldsymbol{\sigma})$ Represented By A Dirichlet Series

Praneeta Verma*

Abstract

In this paper, we have discussed some properties of the mean values of an entire function represented by Dirichlet series in the usual notation. It is obvious that generally $\lambda_{*} \leq \lambda$ and $\rho_{*} \leq \rho$, there are entire Dirichlet series for which $\lambda_{*}<\lambda$ and $\rho_{*}<\rho$. Hence, we have generally to distinguish between the limits as well as types of $f(s)$ belonging to the same order $\rho_{*}\left(0<\rho_{*}<\infty\right)$. In this paper, we obtain some result of $m_{2, k}(\sigma)$ for the mean value of an entire Dirichlet series.

THEOREM If $f(s)=\sum_{1}^{\infty} a_{n} e^{s \lambda_{n}}$ is an entire function of Ritt order σ and lower order λ then

$$
\begin{align*}
& \rho_{*} \tag{a}\\
& \lambda_{*} \leq \lim _{\sigma \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log m_{2, k}(\sigma)}{\sigma} \leq{ }_{\lambda}^{\rho}
\end{align*}
$$

Under the additional condition on $\left\{\lambda_{n}\right\}$,

$$
\begin{equation*}
0 \leq \lim _{n \rightarrow \infty} \sup \frac{\log n}{\lambda_{n}}=D<\infty \tag{A}
\end{equation*}
$$

(a) Becomes

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log \log m_{2, k}(\sigma)}{\sigma}={ }_{\lambda}^{\rho}=\lambda_{\lambda_{*}}^{\rho_{*}} \tag{b}
\end{equation*}
$$

In fact, for the truth of 'lim sup' part of (b) the following condition on $\left\{\lambda_{n}\right\}$ is sufficient.

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n} \log \lambda_{n}}=0
$$

Keywords: Generalized order ρ, Generalized lower order λ, Type of the function T

INTRODUCTION

In the usual notation,

[^0]\[

$$
\begin{gather*}
f(s)=\sum_{1}^{\infty} a_{n} e^{s \lambda_{n}},(s=\sigma+i t), \\
0<\lambda_{n}<\lambda_{n+1} \quad(n \geq 1) \lim _{n \rightarrow \infty} \lambda_{n}=\infty, \tag{1.1}
\end{gather*}
$$
\]

Is an entire function in the sense that the Dirichlet series representing it, is absolutely convergent for all finite s and possesses two generally different pairs of orders as Ritt [1] defined.

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log \log M(\sigma)}{\sigma}={ }_{\lambda}^{\rho} ; \tag{1.2}
\end{equation*}
$$

As Sugimura ([2]) define

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log \log \mu(\sigma)}{\sigma}=\frac{\rho_{*}}{\lambda_{*}} ; \tag{1.3}
\end{equation*}
$$

Clearly $\rho_{*} \leq \rho_{\text {and }} \lambda_{*} \leq \lambda$ there are entire Dirichlet series for which $\rho_{*}<\rho, \lambda_{*}<\lambda$ ([2], Satz 4).
Where $0 \leq \lambda, \rho \leq \infty, 0 \leq \lambda_{*}, \rho_{*} \leq \infty$, and $M(\sigma), \mu(\sigma)$ their usual meanings, viz.

$$
M(\sigma)=\begin{gathered}
\text { l.u.b. } \\
M<t<\infty
\end{gathered}|f(\sigma+i t)|, \mu(\sigma)=\max _{n \geq 1}\left|a_{n} e^{(\sigma+i t) \lambda_{n}}\right|
$$

 follow:

$$
\begin{align*}
& \lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log M(\sigma)}{e^{\rho \sigma}}=\frac{T}{t}, \quad(0<\rho<\infty) \\
& \lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log \mu(\sigma)}{e^{\rho_{\sigma} \sigma}}=T_{*}, \quad\left(0<\rho_{*}<\infty\right) . \tag{1.4}
\end{align*}
$$

The mean values of $f(s)$ are defined as follows as shown in ([3] p.270)

$$
\begin{align*}
& \left\{I_{2}(\sigma, f)\right\}^{2}=\left\{I_{2}(\sigma)\right\}^{2}=A_{2}(\sigma)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(\sigma+i t)|^{2} d t, \quad 0<\delta<\infty, \tag{1.6}\\
& m_{2, k}(\sigma, f)=m_{2, k}(\sigma)=\lim _{T \rightarrow \infty} \frac{1}{2 T e^{k \sigma}} \int_{-\infty}^{\sigma} \int_{-T}^{T}|f(x+i t)|^{2} e^{k x} d x d t \\
& =\frac{1}{e^{k \sigma}} \int_{-\infty}^{\sigma} A_{2}(x) e^{k x} d x, \tag{1.7}\\
& \quad 0<k<\infty
\end{align*}
$$

Kamthan [4] has obtained a few properties of the mean $V_{\mathrm{k}}(\sigma, f)$ of $f(s)$ where $V_{k}(\sigma, f)_{\text {is }}$ defined as

$$
\begin{equation*}
V_{2, k}(\sigma, f)=\frac{1}{e^{k \sigma}} \int_{0}^{\sigma} A_{2}(x) e^{k x} d x=m_{2, k}(\sigma)-J, \quad 0<k<\infty \tag{1.8}
\end{equation*}
$$

Where J is a real constant depending on k and f. It easily follows from (1.8) that for all large σ the behavior of $m_{2, k}(\sigma, f)$ is the same as that of $V_{k}(\sigma, f)$ and all results that have been derived for $V_{k}(\sigma, f)$ can be obtained for $m_{2, k}(\sigma, f)$.

THEOREM

If $f(s)=\sum_{1}^{\infty} a_{n} e^{s \lambda_{n}} \quad$ is an entire function of Ritt order σ and A lower order λ then

$$
\begin{align*}
& \rho_{*}^{*} \lim _{\lambda_{*}} \sup _{\sigma \rightarrow \infty} \log \frac{\log m_{2, k}(\sigma)}{\sigma} \leq_{\lambda}^{\rho} \tag{2.1}
\end{align*}
$$

Under the additional condition on $\left\{\lambda_{n}\right\}$,

$$
\begin{equation*}
0 \leq \lim _{n \rightarrow \infty} \sup \frac{\log n}{\lambda_{n}}=D<\infty, \tag{2.2}
\end{equation*}
$$

(2.1) Becomes

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log m_{2, k}(\sigma)}{\sigma}={ }_{\lambda}^{\rho}=\lambda_{\lambda}^{\rho_{*}} \tag{2.3}
\end{equation*}
$$

In fact, for the truth of 'lim sup' part of (b) the following condition on $\left\{\lambda_{n}\right\}$ is sufficient.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n} \log \lambda_{n}}=0 \tag{2.4}
\end{equation*}
$$

Proof. The definition of $A_{2}(\sigma)$ and Parseval's identity for Dirichlet series,

$$
A_{2}(\sigma)=\sum_{1}^{\infty}\left|a_{n}\right|^{2} e^{2 \sigma} \lambda_{n},
$$

Together gives us

$$
\begin{equation*}
\{\mathrm{u}(\sigma)\}^{2} \leq A_{2}(\sigma) \leq\{M(\sigma)\}^{2} \tag{2.5}
\end{equation*}
$$

Also, since $M(\sigma)$ is increasing function of σ,

$$
\begin{align*}
& m_{2, k}(\sigma)=\frac{1}{e^{k \sigma}} \int_{-\infty}^{\sigma} A_{2}(x) e^{k x} d x, \\
& \leq \frac{\{M(\sigma)\}^{2}}{k} \tag{2.6}
\end{align*}
$$

This leads to

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log m_{2, k}(\sigma)}{\sigma} \leq \lim _{\sigma \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log M(\sigma)}{\sigma} \tag{2.7}
\end{equation*}
$$

Comparing (1.2) and (2.7), we get

$$
\begin{equation*}
\lim _{\sigma \rightarrow \infty} \sup _{\sup } \frac{\log \log m_{2, k}(\sigma)}{\sigma} \leq_{\substack{\rho \\ \lambda}} \tag{2.8}
\end{equation*}
$$

From (1.7), we have for $\mathrm{h}>0$

$$
m_{2, k}(\sigma+h) \geq \frac{1}{e^{k(\sigma+h)}} \int_{\sigma}^{\sigma+h} A_{2}(x) e^{k x} d x
$$

This with (2.5) will give us

$$
\begin{equation*}
m_{2, k}(\sigma+h) \geq \frac{\{\mu(\sigma)\}^{2}}{k}\left\{1-e^{-k h}\right\} \tag{2.9}
\end{equation*}
$$

Consequently, we get

$$
\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log \log \mu(\sigma)}{\sigma} \leq \lim _{\sigma \rightarrow \infty} \sup \inf \frac{\log \log m_{2, k}(\sigma)}{\sigma}
$$

Now using (1.3), we get

$$
\begin{align*}
& \rho_{*} \lim _{\lambda_{*}} \sup _{\text {inf }} \frac{\log \log m_{2, k}(\sigma)}{\sigma} \tag{2.10}
\end{align*}
$$

Combining (2.8) and (2.10), we have

$$
\begin{aligned}
& \rho_{*} \\
& \lambda_{*} \leq \sigma \rightarrow \infty \\
& \lim _{\text {inf }} \frac{\sup }{} \frac{\log \log m_{2, k}(\sigma)}{\sigma} \leq_{\lambda}^{\rho}
\end{aligned}
$$

To prove (2.3) we use the known results ([5], p.68) that under the condition (2.2)

$$
\begin{equation*}
M(\sigma)<K \mu(\sigma+D+\epsilon)(2.11) \tag{2.11}
\end{equation*}
$$

Where ε is an arbitrary small positive number r and k is constant depending on D, ε (2.6) in conjunction with (2.11) gives

$$
\lim _{\sigma \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log m_{2, k}(\sigma)}{\sigma} \leq \lim _{\sigma \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log M(\sigma)}{\sigma} \leq \lim _{\sigma \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log \mu(\sigma)}{\sigma}
$$

From this particular case, stated as part of the theorem now follows immediately It is known that under condition

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n} \log \lambda_{n}}=0 \\
\rho=\lim _{n \rightarrow \infty} \sup \frac{\lambda_{n} \log \lambda}{\log \left|a_{n}\right|^{-1}} \tag{6}
\end{array}
$$

Further, from the result of Reddy [7] we conclude that

$$
\rho_{*}=\lim _{n \rightarrow \infty} \sup \frac{\lambda_{n} \log \lambda}{\log \left|a_{n}\right|^{-1}}
$$

Combining these two, we have

$$
\rho_{*}=\rho
$$

Thus, we have completed the proof of the theorem.

CONCLUSION

Juneja [8] has proved the particular case of our theorem under the condition (2.2) with $\mathrm{D}=0$. He has used the asymptotic equality $\log M(\sigma) \sim \log \mu(\sigma), \sigma \rightarrow \infty$. The method of proofs of our results is different from that of Juneja. For a sufficient condition for the truth of asymptotic equality is known only in the form ([9], p.73)

$$
0 \leq \lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \lambda_{n}}=E<\infty
$$

In addition, this condition is not necessarily implied by Juneja's assumption of (2.2) with $\mathrm{D}=0$.
Finally, I take this opportunity to thanks Dr. J.P. Singh, for his valuable suggestions in the preparation of this paper.

REFERENCES

1. Ritt JF. On certain points in the theory of Dirichlet series. Am J Math. 1928;50(1):73-86. doi: 10.2307/2370849.
2. Sugimura K. Ubertragung einiger Satze aus der Theorie der ganzen functionen auf Dirichlet sche Reihen. Math Z. 1920;29:264-277p.
3. Gupta JS. On the mean value of integral functions and their derivatives defined by Dirichlet series. Am Math Mon. 1964;71(5):520-3. doi: 10.2307/2312589.
4. Kamthan PK. On the mean values of an entire function represented by Dirichlet series. Acta Math Acad Sci Hunger. 1964;15(1-2):133-6. doi: 10.1007/BF01897029.
5. Yung YC. Sur les driotes de Borel de certain function entieres Ann. Sciecole Norm Suppl. 1951;3(68):65-104p.
6. Anderson JM. Regularity criteria for integral function and meromorphic function. Società Amer, Trans. Vol. 124; 1966. p. 185-200p.
7. Reddy. On entire Dirichlet series of infinite order I. Rev Math Hirp Am. 1967;27:120-131p.
8. Juneja OP. On the mean values of integral function and its derivative represented by Dirichlet series. Ann Pol Math. 1966;18:307-13.
9. Yung YC. Sur les driotes de Borel de certain function entieres Ann. Sci Ecole [Suppl]. 1951;3(68):65-104.

[^0]: *Author for Correspondence
 Praneeta Verma
 E-mail: pvpraneeta@gmail.com
 Assistant Professor, Department of Mathematics, Starex University, Gurgaon, Haryana, India

 Received Date: May 17, 2021
 Accepted Date: May 19, 2021
 Published Date: May 24, 2021
 Citation: Praneeta Verma. Few Properties of $m_{2, k}(\sigma)$ Represented By A Dirichlet Series. Research \& Reviews: Discrete Mathematical Structures. 2021; 8(1): 17-21p.

