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Abstract 

In this paper, we have discussed some properties of the mean values of an entire function represented 

by Dirichlet series in the usual notation. It is obvious that generally 𝜆∗ ≤ 𝜆 and 𝜌∗ ≤ 𝜌, there are 

entire Dirichlet series for which 𝜆∗ < 𝜆 and 𝜌∗ < 𝜌. Hence, we have generally to distinguish between 

the limits as well as types of 𝑓(𝑠) belonging to the same order 𝜌∗ (0 < 𝜌∗ < ∞). In this paper, we 

obtain some result of 𝑚2,𝑘(𝜎) for the mean value of an entire Dirichlet series.  
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In fact, for the truth of 'lim sup' part of (b) the following condition on 
}{ n  is sufficient. 
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INTRODUCTION 

In the usual notation, 
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Is an entire function in the sense that the 

Dirichlet series representing it, is absolutely 

convergent for all finite s and possesses two 

generally different pairs of orders as Ritt [1] 

defined. 
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As Sugimura ([2]) define 
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Clearly  * and .*   there are entire Dirichlet series for which ).4],2[(,* Satz    
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The type T, t associated with  and type T*, 𝑡∗associate with *  are defined in the usual way as 

follow:  
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The mean values of 𝑓(𝑠) are defined as follows as shown in ([3] p.270) 
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0 < 𝑘 < ∞  (1.7) 

 

Kamthan [4] has obtained a few properties of the mean V k ),( f of 𝑓(𝑠) where ),( fVk  is 

defined as  
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0 < 𝑘 < ∞  (1.8) 

 

Where J is a real constant depending on k and 𝑓. It easily follows from (1.8) that for all large   the 

behavior of ),(,2 fm k  is the same as that of ),( fVk  and all results that have been derived for 

),( fVk   can be obtained for ),(,2 fm k  . 
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In fact, for the truth of 'lim sup' part of (b) the following condition on 
}{ n  is sufficient. 
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Proof. The definition of 𝐴2( ) and Parseval’s identity for Dirichlet series,  

𝐴2( ) =
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Together gives us 

{u( )}2≤ 𝐴2 ( ) ≤ {𝑀 ( )}
2
  (2.5) 

 

Also, since 𝑀 ( ) is increasing function of 𝜎, 
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This leads to 
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Comparing (1.2) and (2.7), we get 
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From (1.7), we have for h>0 
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Consequently, we get  

 
 

Now using (1.3), we get 
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Combining (2.8) and (2.10), we have 
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To prove (2.3) we use the known results ([5], p.68) that under the condition (2.2) 

𝑀(𝜎) < 𝐾𝜇(𝜎 + 𝐷 + 𝜖)(2.11)  (2.11) 

 

Where 𝜀 is an arbitrary small positive number r and 𝑘 is constant depending on D, 𝜀 (2.6) in 

conjunction with (2.11) gives 
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From this particular case, stated as part of the theorem now follows immediately  

It is known that under condition  
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Further, from the result of Reddy [7] we conclude that 
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Combining these two, we have 
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Thus, we have completed the proof of the theorem. 
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CONCLUSION 

Juneja [8] has proved the particular case of our theorem under the condition (2.2) with D = 0. He 

has used the asymptotic equality 𝑙𝑜𝑔𝑀(𝜎)~𝑙𝑜𝑔𝜇(𝜎), 𝜎 → ∞.  The method of proofs of our results is 

different from that of Juneja. For a sufficient condition for the truth of asymptotic equality is known 

only in the form ([9], p.73) 
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In addition, this condition is not necessarily implied by Juneja’s assumption of (2.2) with D = 0. 

 

Finally, I take this opportunity to thanks Dr. J.P. Singh, for his valuable suggestions in the 

preparation of this paper. 
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